Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338976

ABSTRACT

This work was aimed at the complex analysis of the metabolic and oxygen statuses of tumors in vivo after photodynamic therapy (PDT). Studies were conducted on mouse tumor model using two types of photosensitizers-chlorin e6-based drug Photoditazine predominantly targeted to the vasculature and genetically encoded photosensitizer KillerRed targeted to the chromatin. Metabolism of tumor cells was assessed by the fluorescence lifetime of the metabolic redox-cofactor NAD(P)H, using fluorescence lifetime imaging. Oxygen content was assessed using phosphorescence lifetime macro-imaging with an oxygen-sensitive probe. For visualization of the perfused microvasculature, an optical coherence tomography-based angiography was used. It was found that PDT induces different alterations in cellular metabolism, depending on the degree of oxygen depletion. Moderate decrease in oxygen in the case of KillerRed was accompanied by an increase in the fraction of free NAD(P)H, an indicator of glycolytic switch, early after the treatment. Severe hypoxia after PDT with Photoditazine resulted from a vascular shutdown yielded in a persistent increase in protein-bound (mitochondrial) fraction of NAD(P)H. These findings improve our understanding of physiological mechanisms of PDT in cellular and vascular modes and can be useful to develop new approaches to monitoring its efficacy.


Subject(s)
NAD , Photochemotherapy , Animals , Mice , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/metabolism , Oxygen/metabolism , Disease Models, Animal , Photochemotherapy/methods
2.
Cell Death Dis ; 14(2): 77, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732501

ABSTRACT

Dysregulation of pre-mRNA splicing is a common hallmark of cancer cells and it is associated with altered expression, localization, and mutations of the components of the splicing machinery. In the last few years, it has been elucidated that spliceosome components can also influence cellular processes in a splicing-independent manner. Here, we analyze open source data to understand the effect of the knockdown of splicing factors in human cells on the expression and splicing of genes relevant to cell proliferation, migration, cell cycle regulation, DNA repair, and cell death. We supplement this information with a comprehensive literature review of non-canonical functions of splicing factors linked to cancer progression. We also specifically discuss the involvement of splicing factors in intercellular communication and known autoregulatory mechanisms in restoring their levels in cells. Finally, we discuss strategies to target components of the spliceosome machinery that are promising for anticancer therapy. Altogether, this review greatly expands understanding of the role of spliceosome proteins in cancer progression.


Subject(s)
Neoplasms , Spliceosomes , Humans , Spliceosomes/genetics , Spliceosomes/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA Splicing/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Cell Cycle Checkpoints , RNA Precursors/genetics , RNA Precursors/metabolism
3.
ACS Sens ; 8(2): 619-629, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36662613

ABSTRACT

DNA-intercalated motifs (iMs) are facile scaffolds for the design of various pH-responsive nanomachines, including biocompatible pH sensors. First, DNA pH sensors relied on complex intermolecular scaffolds. Here, we used a simple unimolecular dual-labeled iM scaffold and minimized it by replacing the redundant loop nucleosides with abasic or alkyl linkers. These modifications improved the thermal stability of the iM and increased the rates of its pH-induced conformational transitions. The best effects were obtained upon the replacement of all three native loops with short and flexible linkers, such as the propyl one. The resulting sensor showed a pH transition value equal to 6.9 ± 0.1 and responded rapidly to minor acidification (tau1/2 <1 s for 7.2 → 6.6 pH jump). We demonstrated the applicability of this sensor for pH measurements in the nuclei of human lung adenocarcinoma cells (pH = 7.4 ± 0.2) and immortalized embryonic kidney cells (pH = 7.0 ± 0.2). The sensor stained diffusely the nucleoplasm and piled up in interchromatin granules. These findings highlight the prospects of iMs in the studies of normal and pathological pH-dependent processes in the nucleus, including the formation of biomolecular condensates.


Subject(s)
Cell Nucleus , DNA , Humans , Hydrogen-Ion Concentration , DNA/chemistry , Nuclear Bodies
4.
Front Cell Dev Biol ; 10: 825014, 2022.
Article in English | MEDLINE | ID: mdl-36263012

ABSTRACT

Cancer-associated fibroblasts (CAFs) have long been known as one of the most important players in tumor initiation and progression. Even so, there is an incomplete understanding of the identification of CAFs among tumor microenvironment cells as the list of CAF marker genes varies greatly in the literature, therefore it is imperative to find a better way to identify reliable markers of CAFs. To this end, we summarized a large number of single-cell RNA-sequencing data of multiple tumor types and corresponding normal tissues. As a result, for 9 different types of cancer, we identified CAF-specific gene expression signatures and found 10 protein markers that showed strongly positive staining of tumor stroma according to the analysis of IHC images from the Human Protein Atlas database. Our results give an insight into selecting the most appropriate combination of cancer-associated fibroblast markers. Furthermore, comparison of different approaches for studying differences between cancer-associated and normal fibroblasts (NFs) illustrates the superiority of transcriptome analysis of fibroblasts obtained from fresh tissue samples. Using single-cell RNA sequencing data, we identified common differences in gene expression patterns between normal and cancer-associated fibroblasts, which do not depend on the type of tumor.

5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35217616

ABSTRACT

Molecular, morphological, and physiological heterogeneity is the inherent property of cells which governs differences in their response to external influence. Tumor cell metabolic heterogeneity is of a special interest due to its clinical relevance to tumor progression and therapeutic outcomes. Rapid, sensitive, and noninvasive assessment of metabolic heterogeneity of cells is a great demand for biomedical sciences. Fluorescence lifetime imaging (FLIM), which is an all-optical technique, is an emerging tool for sensing and quantifying cellular metabolism by measuring fluorescence decay parameters of endogenous fluorophores, such as NAD(P)H. To achieve accurate discrimination between metabolically diverse cellular subpopulations, appropriate approaches to FLIM data collection and analysis are needed. In this paper, the unique capability of FLIM to attain the overarching goal of discriminating metabolic heterogeneity is demonstrated. This has been achieved using an approach to data analysis based on the nonparametric analysis, which revealed a much better sensitivity to the presence of metabolically distinct subpopulations compared to more traditional approaches of FLIM measurements and analysis. The approach was further validated for imaging cultured cancer cells treated with chemotherapy. These results pave the way for accurate detection and quantification of cellular metabolic heterogeneity using FLIM, which will be valuable for assessing therapeutic vulnerabilities and predicting clinical outcomes.


Subject(s)
Neoplasms/metabolism , Optical Imaging/methods , Disease Progression , Humans , Neoplasms/pathology
6.
Molecules ; 26(21)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34770757

ABSTRACT

New water-soluble polynorbornenes P1-P4 containing oligoether, amino acid groups and luminophoric complexes of iridium(III) were synthesized by ring-opening metathesis polymerization. The polymeric products in organic solvents and in water demonstrate intense photoluminescence in the red spectral region. The polymers P1 and P3 with 1-phenylisoquinoline cyclometalating ligands in iridium fragments reveal 4-6 fold higher emission quantum yields in solutions than those of P2 and P4 that contain iridium complexes with 1-(thien-2-yl)isoquinoline cyclometalating ligands. The emission parameters of P1-P4 in degassed solutions essentially differ from those in the aerated solutions showing oxygen-dependent quenching of phosphorescence. Biological testing of P1 and P3 demonstrates that the polymers do not penetrate into live cultured cancer cells and normal skin fibroblasts and do not possess cytotoxicity within the concentrations and time ranges reasonable for biological studies. In vivo, the polymers display longer phosphorescence lifetimes in mouse tumors than in muscle, as measured using phosphorescence lifetime imaging (PLIM), which correlates with tumor hypoxia. Therefore, preliminary evaluation of the synthesized polymers shows their suitability for noninvasive in vivo assessments of oxygen levels in biological tissues.


Subject(s)
Iridium/chemistry , Light , Luminescent Agents/chemistry , Plastics/chemistry , Animals , Biosensing Techniques , Cell Survival/drug effects , Chemistry Techniques, Synthetic , Humans , Mice , Molecular Structure , Oxygen/analysis , Photochemical Processes , Plastics/chemical synthesis , Plastics/pharmacology , Polymers/chemistry , Spectrum Analysis
7.
Biochim Biophys Acta Gen Subj ; 1865(12): 129978, 2021 12.
Article in English | MEDLINE | ID: mdl-34487824

ABSTRACT

BACKGROUND: Therapeutic effects of PDT depend on many factors, including the amount of singlet oxygen, localization of photosensitizer and irradiation protocol. The present study was aimed to compare the cytotoxic mechanisms of PDT under continuous-wave (CW) and pulsed irradiation using a tumor spheroid model and a genetically encoded photosensitizer miniSOG. METHODS: 1O2 detection in miniSOG and flavin mononucleotide (FMN) solutions was performed. Photobleaching of miniSOG in solution and in HeLa tumor spheroids was analyzed. Tumor spheroid morphology and growth and the cell death mechanisms after PDT in CW and pulsed modes were assessed. RESULTS: We found a more rapid 1O2 generation and a higher photobleaching rate in miniSOG solution upon irradiation in pulsed mode compared to CW mode. Photobleaching of miniSOG in tumor spheroids was also higher after irradiation in the pulsed mode. PDT of spheroids in CW mode resulted in a moderate expansion of the necrotic core of tumor spheroids and a slight inhibition of spheroid growth. The pulsed mode was more effective in induction of cell death, including apoptosis, and suppression of spheroid growth. CONCLUSIONS: Comparison of CW and pulsed irradiation modes in PDT with miniSOG showed more pronounced cytotoxic effects of the pulsed mode. Our results suggest that the pulsed irradiation regimen enables enhanced 1O2 production by photosensitizer and stimulates apoptosis. GENERAL SIGNIFICANCE: Our results provide more insights into the cellular mechanisms of anti-cancer PDT and open the way to improvement of light irradiation protocols.


Subject(s)
Triazenes , Cell Death , Photosensitizing Agents
8.
Molecules ; 26(10)2021 May 13.
Article in English | MEDLINE | ID: mdl-34068190

ABSTRACT

Synthesis of biocompatible near infrared phosphorescent complexes and their application in bioimaging as triplet oxygen sensors in live systems are still challenging areas of organometallic chemistry. We have designed and synthetized four novel iridium [Ir(N^C)2(N^N)]+ complexes (N^C-benzothienyl-phenanthridine based cyclometalated ligand; N^N-pyridin-phenanthroimidazol diimine chelate), decorated with oligo(ethylene glycol) groups to impart these emitters' solubility in aqueous media, biocompatibility, and to shield them from interaction with bio-environment. These substances were fully characterized using NMR spectroscopy and ESI mass-spectrometry. The complexes exhibited excitation close to the biological "window of transparency", NIR emission at 730 nm, and quantum yields up to 12% in water. The compounds with higher degree of the chromophore shielding possess low toxicity, bleaching stability, absence of sensitivity to variations of pH, serum, and complex concentrations. The properties of these probes as oxygen sensors for biological systems have been studied by using phosphorescence lifetime imaging experiments in different cell cultures. The results showed essential lifetime response onto variations in oxygen concentration (2.0-2.3 µs under normoxia and 2.8-3.0 µs under hypoxia conditions) in complete agreement with the calibration curves obtained "in cuvette". The data obtained indicate that these emitters can be used as semi-quantitative oxygen sensors in biological systems.


Subject(s)
Biocompatible Materials/chemistry , Iridium/chemistry , Luminescence , Oxygen/analysis , Animals , CHO Cells , Cricetulus , HeLa Cells , Humans , Molecular Conformation , Proton Magnetic Resonance Spectroscopy , Subcellular Fractions/metabolism
9.
J Biomed Opt ; 25(12)2020 12.
Article in English | MEDLINE | ID: mdl-33331150

ABSTRACT

SIGNIFICANCE: Despite the importance of the cell membrane in regulation of drug activity, the influence of drug treatments on its physical properties is still poorly understood. The combination of fluorescence lifetime imaging microscopy (FLIM) with specific viscosity-sensitive fluorescent molecular rotors allows the quantification of membrane viscosity with high spatiotemporal resolution, down to the individual cell organelles. AIM: The aim of our work was to analyze microviscosity of the plasma membrane of living cancer cells during chemotherapy with cisplatin using FLIM and correlate the observed changes with lipid composition and cell's response to treatment. APPROACH: FLIM together with viscosity-sensitive boron dipyrromethene-based fluorescent molecular rotor was used to map the fluidity of the cell's membrane. Chemical analysis of membrane lipid composition was performed with time-of-flight secondary ion mass spectrometry (ToF-SIMS). RESULTS: We detected a significant steady increase in membrane viscosity in viable cancer cells, both in cell monolayers and tumor spheroids, upon prolonged treatment with cisplatin, as well as in cisplatin-adapted cell line. ToF-SIMS revealed correlative changes in lipid profile of cisplatin-treated cells. CONCLUSIONS: These results suggest an involvement of membrane viscosity in the cell adaptation to the drug and in the acquisition of drug resistance.


Subject(s)
Cisplatin , Neoplasms , Cisplatin/pharmacology , Fluorescent Dyes , Microscopy, Fluorescence , Organelles , Viscosity
10.
Methods Appl Fluoresc ; 8(1): 014002, 2019 Nov 13.
Article in English | MEDLINE | ID: mdl-31622964

ABSTRACT

Exploring metabolism in human tumors at the cellular level remains a challenge. The reduced form of metabolic cofactor NAD(P)H is one of the major intrinsic fluorescent components in tissues and a valuable indicator of cellular metabolic activity. Fluorescence lifetime imaging (FLIM) enables resolution of both the free and protein-bound fractions of this cofactor, and thus, high sensitivity detection of relative changes in the NAD(P)H-dependent metabolic pathways in real time. However, the clinical use of this technique is still very limited. The applications of metabolic FLIM could be usefully expanded by probing cellular metabolism in tissues ex vivo. For this, however, the development of appropriate tissue preservation protocols is required in order to maintain the optical metabolic characteristics in the ex vivo sample in a state similar to those of the tumor in vivo. Using mouse tumor models of different histological types-colorectal cancer, lung carcinoma and melanoma-we tested eight different methods of tissue handling by comparing NAD(P)H fluorescence decay parameters ex vivo and in vivo as measured with two-photon excited FLIM microscopy. It was found that the samples placed in 10% BSA on ice immediately after excision maintained the same fluorescence lifetimes and free/bound ratios as measured in vivo for at least 3 hours. This protocol was subsequently used for metabolic assessments in fresh postoperative samples from colorectal cancer patients. A high degree of inter- and intra-tumor heterogeneity with a trend to a more oxidative metabolism was detected in T3 colorectal tumors in comparison with normal tumor-distant colon samples. These results suggest that the methodology developed on the basis of FLIM of NAD(P)H in tissues ex vivo show promise for interrogating the metabolic state of patients' tumors.


Subject(s)
Fluorescence , NAD/analysis , Neoplasms/diagnostic imaging , Neoplasms/metabolism , Optical Imaging , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Time Factors , Tumor Cells, Cultured
11.
Cytometry A ; 95(1): 47-55, 2019 01.
Article in English | MEDLINE | ID: mdl-30329217

ABSTRACT

Although chemotherapy remains one of the main types of treatment for cancer, treatment failure is a frequent occurrence, emphasizing the need for new approaches to the early assessment of tumor response. The aim of this study was to search for indicators based on optical imaging of cellular metabolism and of collagen in tumors in vivo that enable evaluation of their response to chemotherapy. The study was performed on a mouse colorectal cancer model with the use of cisplatin, paclitaxel, and irinotecan. The metabolic activity of the tumor cells was assessed using fluorescence lifetime imaging of the metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H. Second harmonic generation (SHG) imaging was used to analyze the extent and properties of collagen within the tumors. We detected an early decrease in the free/bound NAD(P)H ratio in all treated tumors, indicating a shift toward a more oxidative metabolism. Monitoring of collagen showed an early increase in the amount of collagen followed by an increase in the extent of its orientation in tumors treated with cisplatin and paclitaxel, and decrease in collagen content in the case of irinotecan. Our study suggests that changes in cellular metabolism and fibrotic stroma organization precede morphological alterations and tumor size reduction, and that this indicates that NAD(P)H and collagen can be considered as intrinsic indicators of the response to treatment. This is the first time that these parameters have been investigated in tumors in vivo in the course of chemotherapy with drugs having different mechanisms of action. © 2018 International Society for Advancement of Cytometry.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Collagen/metabolism , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/drug therapy , NADP/metabolism , Animals , Biomarkers, Tumor/chemistry , Cell Line, Tumor , Cisplatin/therapeutic use , Collagen/chemistry , Colorectal Neoplasms/metabolism , Disease Models, Animal , Female , Irinotecan/therapeutic use , Mice , Mice, Inbred BALB C , Microscopy, Fluorescence, Multiphoton , Paclitaxel/therapeutic use , Second Harmonic Generation Microscopy
12.
Biochim Biophys Acta Gen Subj ; 1862(8): 1693-1700, 2018 08.
Article in English | MEDLINE | ID: mdl-29719197

ABSTRACT

Paclitaxel, a widely used antimicrotubular agent, predominantly eliminates rapidly proliferating cancer cells, while slowly proliferating and quiescent cells can survive the treatment, which is one of the main reasons for tumor recurrence and non-responsiveness to the drug. To improve the efficacy of chemotherapy, biomarkers need to be developed to enable monitoring of tumor responses. In this study we considered the auto-fluorescent metabolic cofactors NAD(P)H and FAD as possible indicators of cancer cell response to therapy with paclitaxel. It was found that, among the tested parameters (the fluorescence intensity-based redox ratio FAD/NAD(P)H, and the fluorescence lifetimes of NAD(P)H and FAD), the fluorescence lifetime of NAD(P)H is the most sensitive in tracking the drug response, and is capable of indicating heterogeneous cellular responses both in cell monolayers and in multicellular tumor spheroids. We observed that metabolic reorganization to a more oxidative state preceded the morphological manifestation of cell death and developed faster in cells that were more responsive to the drug. Our results suggest that noninvasive, label-free monitoring of the drug-induced metabolic changes by noting the NAD(P)H fluorescence lifetime is a valuable approach to characterize the responses of cancer cells to anti-cancer treatments and, therefore, to predict the effectiveness of chemotherapy.


Subject(s)
Apoptosis/drug effects , Biomarkers/metabolism , Flavin-Adenine Dinucleotide/metabolism , NADP/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Paclitaxel/pharmacology , Antineoplastic Agents, Phytogenic , Humans , Microscopy, Fluorescence, Multiphoton , Neoplasms/drug therapy , Oxidation-Reduction , Tumor Cells, Cultured
13.
Stem Cell Res Ther ; 9(1): 84, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29615099

ABSTRACT

BACKGROUND: Despite the significant progress in the development of skin equivalents (SEs), the problem of noninvasively assessing the quality of the cell components and the collagen structure of living SEs both before and after transplantation remains. Undoubted preference is given to in vivo methods of noninvasive, label-free monitoring of the state of the SEs. Optical bioimaging methods, such as cross-polarization optical coherence tomography (CP OCT), multiphoton tomography (MPT), and fluorescence lifetime imaging microscopy (FLIM), present particular advantages for the visualization of such SEs. METHODS: In this study, we simultaneously applied several visualization techniques for skin model examination. We investigated the structure and quality of dermal equivalents containing dermal papilla (DP) cells and dermal fibroblasts (FBs) using CP OCT, MPT, and FLIM. Both the energy metabolism of the cell components and the structuring of the collagen fibrils were addressed. RESULTS: Based on the data from the fluorescence lifetimes and the contributions of protein-bound NAD(P)H, a bias toward oxidative metabolism was indicated, for the first time, in both the DP cells and FBs on day 14 of SE cultivation. The CP OCT and MPT data also indicated that both DP cells and FBs structured the collagen gel in a similar manner. CONCLUSION: In this study, multimodal label-free imaging of the structure and quality of living dermal equivalents was implemented for the first time with the use CP OCT, MPT, and FLIM of NAD(P)H. Our data suggest that the combination of different imaging techniques provides an integrated approach to data acquisition regarding the structure and quality of dermal equivalents, minimizes the potential disadvantages of using a single method, and provides an ideal information profile for clinical and research applications.


Subject(s)
Fibroblasts/cytology , Hair Follicle/cytology , Mesenchymal Stem Cells/cytology , Animals , Cells, Cultured , Collagen/metabolism , Energy Metabolism , Fibroblasts/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence, Multiphoton , Tomography, Optical Coherence
14.
RSC Adv ; 8(31): 17224-17236, 2018 May 09.
Article in English | MEDLINE | ID: mdl-35539280

ABSTRACT

This paper presents synthesis and photophysical investigation of cyclometalated water-soluble Pt(ii) and Ir(iii) complexes containing auxiliary sulfonated diphosphine (bis(diphenylphosphino)benzene (dppb), P^P*) ligand. The complexes demonstrate considerable variations in excitation (extending up to 450 nm) and emission bands (with maxima ranging from ca. 450 to ca. 650 nm), as well as in the sensitivity of excited state lifetimes to molecular oxygen (from almost negligible to more than 4-fold increase in degassed solution). Moreover, all the complexes possess high two-photon absorption cross sections (400-500 GM for Pt complexes, and 600-700 GM for Ir complexes). Despite their negative net charge, all the complexes demonstrate good uptake by HeLa cells and low cytotoxicity within the concentration and time ranges suitable for two-photon phosphorescence lifetime (PLIM) microscopy. The most promising complex, [(ppy)2Ir(sulfo-dppb)] (Ir1*), upon incubation in HeLa cells demonstrates two-fold lifetime variations under normal and nitrogen atmosphere, correspondingly. Moreover, its in vivo evaluation in athymic nude mice bearing HeLa tumors did not reveal acute toxicity upon both intravenous and topical injections. Finally, Ir1* demonstrated statistically significant difference in lifetimes between normal tissue (muscle) and tumor in macroscopic in vivo PLIM imaging.

15.
Adv Exp Med Biol ; 1035: 143-153, 2017.
Article in English | MEDLINE | ID: mdl-29080136

ABSTRACT

Abnormal levels of viscosity in tissues and cells are known to be associated with disease and malfunction. While methods to measure bulk macroscopic viscosity of bio-tissues are well developed, imaging viscosity at the microscopic scale remains a challenge, especially in vivo. Molecular rotors are small synthetic viscosity-sensitive fluorophores in which fluorescence parameters are strongly correlated to the microviscosity of their immediate environment. Hence, molecular rotors represent a promising instrument for mapping of viscosity in living cells and tissues at the microscopic level. Quantitative measurements of viscosity can be achieved by recording time-resolved fluorescence decays of molecular rotor using fluorescence lifetime imaging microscopy (FLIM), which is also suitable for dynamic viscosity mapping, both in cellulo and in vivo. Among tools of experimental oncology, 3D tumour cultures, or spheroids, are considered a more adequate in vitro model compared to a cellular monolayer, and represent a less labour-intensive and more unified approach compared to animal tumour models. This chapter describes a methodology for microviscosity imaging in tumour spheroids using BODIPY-based molecular rotors and two photon-excited FLIM.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Imaging, Three-Dimensional/methods , Optical Imaging/methods , Photons , Spheroids, Cellular/ultrastructure , Cell Survival , HeLa Cells , Humans , Kinetics , Spheroids, Cellular/chemistry , Viscosity
16.
Sci Rep ; 7(1): 8911, 2017 08 21.
Article in English | MEDLINE | ID: mdl-28827680

ABSTRACT

Although cisplatin plays a central role in cancer chemotherapy, the mechanisms of cell response to this drug have been unexplored. The present study demonstrates the relationships between the intracellular pH (pHi), cell bioenergetics and the response of cervical cancer to cisplatin. pHi was measured using genetically encoded sensor SypHer2 and metabolic state was accessed by fluorescence intensities and lifetimes of endogenous cofactors NAD(P)H and FAD. Our data support the notion that cisplatin induces acidification of the cytoplasm early after the treatment. We revealed in vitro that a capacity of cells to recover and maintain alkaline pHi after the initial acidification is the crucial factor in mediating the cellular decision to survive and proliferate at a vastly reduced rate or to undergo cell death. Additionally, we showed for the first time that pHi acidification occurs after prolonged therapy in vitro and in vivo, and this, likely, favors metabolic reorganization of cells. A metabolic shift from glycolysis towards oxidative metabolism accompanied the cisplatin-induced inhibition of cancer cell growth in vitro and in vivo. Overall, these findings contribute to an understanding of the mechanisms underlying the responsiveness of an individual cell and tumor to therapy and are valuable for developing new therapeutic strategies.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Energy Metabolism/drug effects , Hydrogen-Ion Concentration , Biomarkers , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , HeLa Cells , Humans , Immunohistochemistry , Intracellular Space/drug effects , Intracellular Space/metabolism , Molecular Imaging
17.
Biochim Biophys Acta Mol Cell Res ; 1864(3): 604-611, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28063999

ABSTRACT

A complex cascade of molecular events occurs in apoptotic cells but cell-to-cell variability significantly complicates determination of the order and interconnections between different processes. For better understanding of the mechanisms of programmed cell death, dynamic simultaneous registration of several parameters is required. In this paper we used multiparameter fluorescence microscopy to analyze energy metabolism, intracellular pH and caspase-3 activation in living cancer cells in vitro during staurosporine-induced apoptosis. We performed metabolic imaging of two co-factors, NAD(P)H and FAD, and used the genetically encoded pH-indicator SypHer1 and the FRET-based sensor for caspase-3 activity, mKate2-DEVD-iRFP, to visualize these parameters by confocal fluorescence microscopy and two-photon fluorescence lifetime imaging microscopy. The correlation between energy metabolism, intracellular pH and caspase-3 activation and their dynamic changes were studied in CT26 cancer cells during apoptosis. Induction of apoptosis was accompanied by a switch to oxidative phosphorylation, cytosol acidification and caspase-3 activation. We showed that alterations in cytosolic pH and the activation of oxidative phosphorylation are relatively early events associated with the induction of apoptosis.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Caspase 3/genetics , Epithelial Cells/drug effects , Staurosporine/pharmacology , Animals , Apoptosis/genetics , Caspase 3/metabolism , Cell Line, Tumor , Coumarins/chemistry , Enzyme Activation/drug effects , Epithelial Cells/cytology , Epithelial Cells/metabolism , Flavin-Adenine Dinucleotide/metabolism , Fluorescence Resonance Energy Transfer , Gene Expression Regulation , Genes, Reporter , Glycolysis/drug effects , Hydrogen-Ion Concentration , Mice , Microscopy, Fluorescence, Multiphoton , Molecular Probes/chemistry , NADP/metabolism , Oxidative Phosphorylation/drug effects , Signal Transduction
18.
Cell Cycle ; 15(9): 1257-66, 2016 05 02.
Article in English | MEDLINE | ID: mdl-26986068

ABSTRACT

Alteration in the cellular energy metabolism is a principal feature of tumors. An important role in modifying cancer cell metabolism belongs to the cancer-associated fibroblasts. However, the regulation of their interaction has been poorly studied to date. In this study we monitored the metabolic status of both cell types by using the optical redox ratio and the fluorescence lifetimes of the metabolic co-factors NAD(P)H and FAD, in addition to the intracellular pH and the hydrogen peroxide levels in the cancer cells, using genetically encoded sensors. In the co-culture of human cervical carcinoma cells HeLa and human fibroblasts we observed a metabolic shift from oxidative phosphorylation toward glycolysis in cancer cells, and from glycolysis toward OXPHOS in fibroblasts, starting from Day 2 of co-culturing. The metabolic switch was accompanied by hydrogen peroxide production and slight acidification of the cytosol in the cancer cells in comparison with that of the corresponding monoculture. Therefore, our HeLa-huFb system demonstrated metabolic behavior similar to Warburg type tumors. To our knowledge, this is the first time that these 3 parameters have been investigated together in a model of tumor-stroma co-evolution. We propose that determination of the start-point of the metabolic alterations and understanding of the mechanisms of their realization can open a new ways for cancer treatment.


Subject(s)
Cell Communication , Fibroblasts/metabolism , Flavin-Adenine Dinucleotide/metabolism , Hydrogen Peroxide/metabolism , NADP/metabolism , Neoplasms/metabolism , Coculture Techniques , Fibroblasts/pathology , Fluorescence , HeLa Cells , Humans , Hydrogen-Ion Concentration , Intracellular Space , Neoplasms/pathology , Oxidation-Reduction
19.
Biochim Biophys Acta ; 1850(9): 1905-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25964069

ABSTRACT

BACKGROUND: Measuring intracellular pH (pHi) in tumors is essential for the monitoring of cancer progression and the response of cancer cells to various treatments. The purpose of the study was to develop a method for pHi mapping in living cancer cells in vitro and in tumors in vivo, using the novel genetically encoded indicator, SypHer2. METHODS: A HeLa Kyoto cell line stably expressing SypHer2 in the cytoplasm was used, to perform ratiometric (dual excitation) imaging of the probe in cell culture, in 3D tumor spheroids and in tumor xenografts in living mice. RESULTS: Using SypHer2, pHi was demonstrated to be 7.34±0.11 in monolayer HeLa cells in vitro under standard cultivation conditions. An increasing pHi gradient from the center to the periphery of the spheroids was displayed. We obtained fluorescence ratio maps for HeLa tumors in vivo and ex vivo. Comparison of the map with the pathomorphology and with hypoxia staining of the tumors revealed a correspondence of the zones with higher pHi to the necrotic and hypoxic areas. CONCLUSIONS: Our results demonstrate that pHi imaging with the genetically encoded pHi indicator, SypHer2, can be a valuable tool for evaluating tumor progression in xenograft models. GENERAL SIGNIFICANCE: We have demonstrated, for the first time, the possibility of using the genetically encoded sensor SypHer2 for ratiometric pH imaging in cancer cells in vitro and in tumors in vivo. SypHer2 shows great promise as an instrument for pHi monitoring able to provide high accuracy and spatiotemporal resolution.


Subject(s)
Biosensing Techniques , Hydrogen-Ion Concentration , Neoplasms/metabolism , Animals , Cell Hypoxia , Genetic Engineering , HeLa Cells , Humans , Mice , Neoplasms/pathology , Spheroids, Cellular
SELECTION OF CITATIONS
SEARCH DETAIL
...