Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 46(5): 4119-4132, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38785521

ABSTRACT

8-oxoguanine (oxoG) is formed in DNA by the action of reactive oxygen species. As a highly mutagenic and the most common oxidative DNA lesion, it is an important marker of oxidative stress. Human 8-oxoguanine-DNA glycosylase (OGG1) is responsible for its prompt removal in human cells. OGG1 is a bifunctional DNA glycosylase with N-glycosylase and AP lyase activities. Aspects of the detailed mechanism underlying the recognition of 8-oxoguanine among numerous intact bases and its subsequent interaction with the enzyme's active site amino acid residues are still debated. The main objective of our work was to determine the effect (structural and thermodynamic) of introducing an oxoG-clamp in model DNA substrates on the process of 8-oxoG excision by OGG1. Towards that end, we used DNA duplexes modeling OGG1-specific lesions: 8-oxoguanine or an apurinic/apyrimidinic site with either cytidine or the oxoG-clamp in the complementary strand opposite to the lesion. It was revealed that there was neither hydrolysis of the N-glycosidic bond at oxoG nor cleavage of the sugar-phosphate backbone during the reaction between OGG1 and oxoG-clamp-containing duplexes. Possible structural reasons for the absence of OGG1 enzymatic activity were studied via the stopped-flow kinetic approach and molecular dynamics simulations. The base opposite the damage was found to have a critical effect on the formation of the enzyme-substrate complex and the initiation of DNA cleavage. The oxoG-clamp residue prevented the eversion of the oxoG base into the OGG1 active site pocket and impeded the correct convergence of the apurinic/apyrimidinic site of DNA and the attacking nucleophilic group of the enzyme. An obtained three-dimensional model of the OGG1 complex with DNA containing the oxoG-clamp, together with kinetic data, allowed us to clarify the role of the contact of amino acid residues with DNA in the formation of (and rearrangements in) the enzyme-substrate complex.

2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38256217

ABSTRACT

Non-heme dioxygenases of the AlkB family hold a unique position among enzymes that repair alkyl lesions in nucleic acids. These enzymes activate the Fe(II) ion and molecular oxygen through the coupled decarboxylation of the 2-oxoglutarate co-substrate to subsequently oxidize the substrate. ALKBH3 is a human homolog of E. coli AlkB, which displays a specific activity toward N1-methyladenine and N3-methylcytosine bases in single-stranded DNA. Due to the lack of a DNA-bound structure of ALKBH3, the basis of its substrate specificity and structure-function relationships requires further exploration. Here we have combined biochemical and biophysical approaches with site-directed mutational analysis to elucidate the role of key amino acids in maintaining the secondary structure and catalytic activity of ALKBH3. Using stopped-flow fluorescence spectroscopy we have shown that conformational dynamics play a crucial role in the catalytic repair process catalyzed by ALKBH3. A transient kinetic mechanism, which comprises the steps of the specific substrate binding, eversion, and anchoring within the DNA-binding cleft, has been described quantitatively by rate and equilibrium constants. Through CD spectroscopy, we demonstrated that replacing side chains of Tyr143, Leu177, and His191 with alanine results in significant alterations in the secondary structure content of ALKBH3 and decreases the stability of mutant proteins. The bulky side chain of Tyr143 is critical for binding the methylated base and stabilizing its flipped-out conformation, while its hydroxyl group is likely involved in facilitating the product release. The removal of the Leu177 and His191 side chains substantially affects the secondary structure content and conformational flexibility, leading to the complete inactivation of the protein. The mutants lacking enzymatic activity exhibit a marked decrease in antiparallel ß-strands, offset by an increase in the helical component.


Subject(s)
AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase , DNA Methylation , Humans , AlkB Homolog 3, Alpha-Ketoglutarate-Dependent Dioxygenase/genetics , Amino Acids , DNA , Ferrous Compounds
3.
Drug Metab Pers Ther ; 37(4): 361-368, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35705023

ABSTRACT

OBJECTIVES: Patients undergoing cardiac surgery develop post-sternotomy pain syndrome. The aim of this study was evaluation of the influence of CYP2C9, PTGS-1 and PTGS-2 genes polymorphisms on the efficacy and safety of postoperative analgesia with ketoprofen in patients with coronary artery disease after cardiac surgery. METHODS: The study included 90 patients undergoing cardiac surgery. A real-time polymerase chain reaction was used for the detection of single nucleotide polymorphisms (SNP). Pain intensity was measured by the Numeric Rating Scale (NRS). Dyspeptic symptoms were evaluated using the Gastrointestinal Symptom Rating Scale (GSRS). Acute kidney injury (AKI) was determined by Kidney Disease Improving Global Outcomes criteria. RESULTS: Pain intensity by the NRS score was significantly higher in patients with CYP2C9*3 АA genotype compared to АC genotype: 7 [1,10] and 6 [2,7] (p=0.003); 7 [1,10] and 6 [2,7] (p=0.04); 6 [0; 10] and 5 [2,6] (p=0.04); 5 [0; 8] and 3 [0; 8] (p=0.02), on days 1, 2, 3 and 5 in the postoperative period, respectively. GSRS score was higher in patients with CYP2C9*2 CT genotype compared to CС genotype: 19 [15; 42] and 18 [15,36] (p=0.04), respectively. There were no significant differences in the pain intensity, dyspepsia severity and AKI frequency in patients with homozygous and heterozygous genotypes for PTGS-1 rs10306135, PTGS-1 rs12353214, PTGS-2 rs20417. CONCLUSIONS: CYP2C9*3 and CYP2C9*2 gene polymorphisms may affect efficacy and safety of postoperative analgesia with ketoprofen in patients with coronary artery disease after cardiac surgery.


Subject(s)
Coronary Artery Disease , Ketoprofen , Humans , Ketoprofen/adverse effects , Polymorphism, Genetic , Cytochrome P-450 CYP2C9/genetics
4.
J Phys Chem B ; 123(23): 4878-4887, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31117610

ABSTRACT

Human 8-oxoguanine-DNA glycosylase (hOGG1) possesses very high specificity for 8-oxoguanine (oxoG), even though this damaged base differs from normal guanine by only two atoms. Our aim was to determine the roles of certain catalytically important amino acid residues in the hOGG1 enzymatic pathway and describe their involvement in the mechanism of DNA lesion recognition. Molecular dynamic simulation and pre-steady-state fluorescence kinetics were performed to analyze the conformational behavior of wild-type hOGG1 and mutants G42S, D268A, and K249Q, as well as damaged and undamaged DNA. A loss of electrostatic interactions in the K249Q mutant leads to the disruption of specific contacts in the active site of the enzyme and the loss of catalytic activity. The absence of residue Asp-268 abrogates the ability of the enzyme to fully flip out the oxoG base from the double helix, thereby disrupting proper positioning of the damaged base in the active site. Furthermore, substitution of Gly-42 with Ser, which forms a damage-specific H-bond with the N7 atom of the oxoG base, creates a stable H-bond between N7 of undamaged G and Oγ of Ser-42. Nevertheless, positioning of the undamaged base in the active site is unsuitable for catalytic hydrolysis of the N-glycosidic bond.


Subject(s)
Amino Acids/metabolism , DNA Glycosylases/metabolism , DNA/metabolism , Amino Acids/chemistry , Binding Sites , DNA/chemistry , DNA Damage , DNA Glycosylases/genetics , Fluorescence , Humans , Kinetics , Molecular Dynamics Simulation , Mutation , Protein Conformation
5.
J Biol Chem ; 288(40): 28936-47, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-23955443

ABSTRACT

8-Oxoguanine-DNA glycosylase (OGG1) removes premutagenic lesion 8-oxoguanine (8-oxo-G) from DNA and then nicks the nascent abasic (apurinic/apyrimidinic) site by ß-elimination. Although the structure of OGG1 bound to damaged DNA is known, the dynamic aspects of 8-oxo-G recognition are not well understood. To comprehend the mechanisms of substrate recognition and processing, we have constructed OGG1 mutants with the active site occluded by replacement of Cys-253, which forms a wall of the base-binding pocket, with bulky leucine or isoleucine. The conformational dynamics of OGG1 mutants were characterized by single-turnover kinetics and stopped-flow kinetics with fluorescent detection. Additionally, the conformational mobility of wild type and the mutant OGG1 substrate complex was assessed using molecular dynamics simulations. Although pocket occlusion distorted the active site and greatly decreased the catalytic activity of OGG1, it did not fully prevent processing of 8-oxo-G and apurinic/apyrimidinic sites. Both mutants were notably stimulated in the presence of free 8-bromoguanine, indicating that this base can bind to the distorted OGG1 and facilitate ß-elimination. The results agree with the concept of enzyme plasticity, suggesting that the active site of OGG1 is flexible enough to compensate partially for distortions caused by mutation.


Subject(s)
Catalytic Domain , DNA Damage , DNA Glycosylases/metabolism , Mutant Proteins/metabolism , Base Sequence , Biocatalysis , Fluorescence , Guanine/analogs & derivatives , Guanine/metabolism , Humans , Kinetics , Molecular Dynamics Simulation , Molecular Sequence Data , Mutation/genetics , Phenylalanine/metabolism , Substrate Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...