Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(4)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33670479

ABSTRACT

The aim of the study was to analyze the frequency and magnitude of association of 21 recurrent founder germline mutations in BRCA1, BRCA2, PALB2, RAD51C, and CHEK2 genes with ovarian cancer risk among unselected patients in Poland. We genotyped 21 recurrent germline mutations in BRCA1 (9 mutations), BRCA2 (4 mutations), RAD51C (3 mutations), PALB2 (2 mutations), and CHEK2 (3 mutations) among 2270 Polish ovarian cancer patients and 1743 healthy controls, and assessed the odds ratios (OR) for developing ovarian cancer for each gene. Mutations were detected in 369 out of 2095 (17.6%) unselected ovarian cancer cases and 117 out of 1743 (6.7%) unaffected controls. The ovarian cancer risk was associated with mutations in BRCA1 (OR = 40.79, 95% CI: 18.67-114.78; p = 0.29 × 10-15), in BRCA2 (OR = 25.98; 95% CI: 1.55-434.8; p = 0.001), in RAD51C (OR = 6.28; 95% CI 1.77-39.9; p = 0.02), and in PALB2 (OR 3.34; 95% CI: 1.06-14.68; p = 0.06). There was no association found for CHEK2. We found that pathogenic mutations in BRCA1, BRCA2, RAD51C or PALB2 are responsible for 12.5% of unselected cases of ovarian cancer. We recommend that all women with ovarian cancer in Poland and first-degree female relatives should be tested for this panel of 18 mutations.

2.
Article in English | MEDLINE | ID: mdl-32765800

ABSTRACT

BACKGROUND: Matrix metalloproteinases (MMPs) and metallothioneins (MTs) are Zinc-related proteins which are involved in processes crucial for carcinogenesis such as angiogenesis, proliferation and apoptosis. Several single nucleotide polymorphisms (SNPs) in MMPs and MTs that affect genes expression have been associated with cancer risk, including breast, lung and colon. METHODS: The study group consisted of 648 unselected patients (299 with breast cancer, 199 with lung cancer, 150 with colon cancer) and 648 unaffected individuals. Five SNPs, rs1799750 in MMP-1, rs243865 in MMP-2, rs11568818 in MMP-7, rs2252070 in MMP-13 and rs28366003 in MT2A were genotyped and serum zinc (Zn) level was measured. The cancer risk was calculated using multivariable logistic regression with respect to Zn. RESULTS: None of the 5 tested polymorphisms showed a correlation with cancer risk in studied groups, although for MMP-2, MMP-7 and MT2A non-significant differences in genotypes frequencies among cases and controls were observed. CONCLUSIONS: Analyses of polymorphisms, rs1799750 in MMP-1, rs243865 in MMP-2, rs11568818 in MMP-7, rs2252070 in MMP-13 and rs28366003 in MT2A in relation to serum Zn level did not show significant association with breast, lung and colon cancer risk among polish patients. Further studies are needed to verify this observation.

3.
Int J Cancer ; 146(5): 1293-1298, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31469414

ABSTRACT

Methylation of the promoter of the BRCA1 gene in DNA derived from peripheral blood cells is a possible risk factor for breast cancer. It is not clear if this association is restricted to certain types of breast cancer or is a general phenomenon. We evaluated BRCA1 methylation status in peripheral blood cells from 942 breast cancer patients and from 500 controls. We also assessed methylation status in 262 paraffin-embedded breast cancer tissues. Methylation status was assessed using methylation-sensitive high-resolution melting and was categorized as positive or negative. BRCA1 methylation in peripheral blood cells was strongly associated with the risk of triple-negative breast cancer (TNBC) (odds ratio [OR] 4.70; 95% confidence interval [CI]: 3.13-7.07; p < 0.001), but not of estrogen-receptor positive breast cancer (OR 0.80; 95% CI: 0.46-1.42; p = 0.46). Methylation was also overrepresented among patients with high-grade cancers (OR 4.53; 95% CI: 2.91-7.05; p < 0.001) and medullary cancers (OR 3.08; 95% CI: 1.38-6.88; p = 0.006). Moreover, we detected a significant concordance of BRCA1 promoter methylation in peripheral blood and paired tumor tissue (p < 0.001). We found that BRCA1 promoter methylation in peripheral blood cells is associated with approximately five times greater risk of TNBC. We propose that BRCA1 methylation in blood-derived DNA could be a novel biomarker of increased breast cancer susceptibility, in particular for triple-negative tumors.


Subject(s)
BRCA1 Protein/genetics , Biomarkers, Tumor/genetics , Genetic Predisposition to Disease , Promoter Regions, Genetic/genetics , Triple Negative Breast Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/blood , Breast/pathology , Case-Control Studies , DNA Methylation , Female , Follow-Up Studies , Humans , Middle Aged , Triple Negative Breast Neoplasms/blood , Triple Negative Breast Neoplasms/pathology
4.
PLoS One ; 14(1): e0208610, 2019.
Article in English | MEDLINE | ID: mdl-30640897

ABSTRACT

BACKGROUND: Lung cancer is the most common adult malignancy accounting for the largest proportion of cancer related deaths. Iron (Fe) is an essential trace element and is a component of several major metabolic pathways playing an important role in many physiological processes. In this study we evaluated the association between Fe concentration in serum, iron metabolism parameters and genetic variaton in 7 genes involved in iron metabolism and anti-oxidative processes with the incidence of lung cancer in Poland. MATERIALS AND METHODS: The study included 200 lung cancer patients and 200 matched healthy control subjects. We analyzed serum iron concentration and iron metabolism parameters (TIBC, UIBC, serum ferritin and transferrin saturation), and genotyped seven variants in seven genes: HFE, TFR1, HAMP, TF, SOD2, CAT and GPX1. RESULTS: Lung cancer patients compared to their matched controls had significantly higher mean serum iron level (p = 0.01), ferritin level (p = 0.007) and TIBC (p = 0.006). Analysis revealed that higher concentration of iron and ferritin (IVth quartile) compared to the lower concentration (Ist quartile) was associated with over 2-fold increased lung cancer incidence. We also found that higher transferrin saturation (p = 0.01) and lower TIBC (p<0.01) are associated with better survival of lung cancer patients. The analysis of polymorphisms in iron related genes did not reveal a significant difference between lung cancer patients and controls. However, rs10421768 in HAMP showed a borderline statistically significant correlation with lung cancer risk (OR = 2.83, p = 0.05). CONCLUSIONS: The results of this case control study indicate that higher body iron represented by higher Fe and ferritin levels may be associated with lung cancer incidence. Rs10421768 in HAMP may be associated with about 3-times higher lung cancer risk. Higher Fe body content may be associated with better survival of lung cancer patients.


Subject(s)
Antioxidants/metabolism , Iron/blood , Iron/metabolism , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Genetic Variation , Humans , Incidence , Lung Neoplasms/blood , Lung Neoplasms/pathology , Neoplasm Staging , Risk Factors , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...