Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
MMWR Morb Mortal Wkly Rep ; 71(28): 904-907, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35834423

ABSTRACT

As part of public health preparedness for infectious disease threats, CDC collaborates with other U.S. public health officials to ensure that the Laboratory Response Network (LRN) has diagnostic tools to detect Orthopoxviruses, the genus that includes Variola virus, the causative agent of smallpox. LRN is a network of state and local public health, federal, U.S. Department of Defense (DOD), veterinary, food, and environmental testing laboratories. CDC developed, and the Food and Drug Administration (FDA) granted 510(k) clearance* for the Non-variola Orthopoxvirus Real-time PCR Primer and Probe Set (non-variola Orthopoxvirus [NVO] assay), a polymerase chain reaction (PCR) diagnostic test to detect NVO. On May 17, 2022, CDC was contacted by the Massachusetts Department of Public Health (DPH) regarding a suspected case of monkeypox, a disease caused by the Orthopoxvirus Monkeypox virus. Specimens were collected and tested by the Massachusetts DPH public health laboratory with LRN testing capability using the NVO assay. Nationwide, 68 LRN laboratories had capacity to test approximately 8,000 NVO tests per week during June. During May 17-June 30, LRN laboratories tested 2,009 specimens from suspected monkeypox cases. Among those, 730 (36.3%) specimens from 395 patients were positive for NVO. NVO-positive specimens from 159 persons were confirmed by CDC to be monkeypox; final characterization is pending for 236. Prompt identification of persons with infection allowed rapid response to the outbreak, including isolation and treatment of patients, administration of vaccines, and other public health action. To further facilitate access to testing and increase convenience for providers and patients by using existing provider-laboratory relationships, CDC and LRN are supporting five large commercial laboratories with a national footprint (Aegis Science, LabCorp, Mayo Clinic Laboratories, Quest Diagnostics, and Sonic Healthcare) to establish NVO testing capacity of 10,000 specimens per week per laboratory. On July 6, 2022, the first commercial laboratory began accepting specimens for NVO testing based on clinician orders.


Subject(s)
Diagnostic Techniques and Procedures , Disease Outbreaks , Mpox (monkeypox) , Disease Outbreaks/prevention & control , Humans , Laboratories , Mpox (monkeypox)/diagnosis , Mpox (monkeypox)/epidemiology , Orthopoxvirus , United States/epidemiology , Variola virus
3.
J Thorac Dis ; 10(3): 2059-2069, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29707364

ABSTRACT

BACKGROUND: Prevention of infection with airborne pathogens and exposure to airborne particulates and aerosols (environmental pollutants and allergens) can be facilitated through use of disposable face masks. The effectiveness of such masks for excluding pathogens and pollutants is dependent on the intrinsic ability of the masks to resist penetration by airborne contaminants. This study evaluated the relative contributions of a mask, valve, and Micro Ventilator on aerosol filtration efficiency of a new N95 respiratory face mask. METHODS: The test mask was challenged, using standardized methods, with influenza A and rhinovirus type 14, bacteriophage ΦΧ174, Staphylococcus aureus (S. aureus), and model pollutants. The statistical significance of results obtained for different challenge microbial agents and for different mask configurations (masks with operational or nonoperational ventilation fans and masks with sealed Smart Valves) was assessed. RESULTS: The results demonstrate >99.7% efficiency of each test mask configuration for exclusion of influenza A virus, rhinovirus 14, and S. aureus and >99.3% efficiency for paraffin oil and sodium chloride (surrogates for PM2.5). Statistically significant differences in effectiveness of the different mask configurations were not identified. The efficiencies of the masks for excluding smaller-size (i.e., rhinovirus and bacteriophage ΦΧ174) vs. larger-size microbial agents (influenza virus, S. aureus) were not significantly different. CONCLUSIONS: The masks, with or without features intended for enhancing comfort, provide protection against both small- and large-size pathogens. Importantly, the mask appears to be highly efficient for filtration of pathogens, including influenza and rhinoviruses, as well as the fine particulates (PM2.5) present in aerosols that represent a greater challenge for many types of dental and surgical masks. This renders this individual-use N95 respiratory mask an improvement over the former types of masks for protection against a variety of environmental contaminants including PM2.5 and pathogens such as influenza and rhinoviruses.

SELECTION OF CITATIONS
SEARCH DETAIL
...