Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Med ; 15(1): 86, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872640

ABSTRACT

BACKGROUND: As the availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including secondary findings. METHODS: We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. RESULTS: For 36/65 gene-disease pairs, loss of function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using the CardiacG2P dataset as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. CONCLUSIONS: Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is a pre-requisite for scalable genomic testing.


Subject(s)
Genetic Testing , Genetic Variation , Humans , Databases, Genetic , Genomics , Inheritance Patterns
2.
Lancet Digit Health ; 5(6): e370-e379, 2023 06.
Article in English | MEDLINE | ID: mdl-37236697

ABSTRACT

BACKGROUND: Machine learning has been used to analyse heart failure subtypes, but not across large, distinct, population-based datasets, across the whole spectrum of causes and presentations, or with clinical and non-clinical validation by different machine learning methods. Using our published framework, we aimed to discover heart failure subtypes and validate them upon population representative data. METHODS: In this external, prognostic, and genetic validation study we analysed individuals aged 30 years or older with incident heart failure from two population-based databases in the UK (Clinical Practice Research Datalink [CPRD] and The Health Improvement Network [THIN]) from 1998 to 2018. Pre-heart failure and post-heart failure factors (n=645) included demographic information, history, examination, blood laboratory values, and medications. We identified subtypes using four unsupervised machine learning methods (K-means, hierarchical, K-Medoids, and mixture model clustering) with 87 of 645 factors in each dataset. We evaluated subtypes for (1) external validity (across datasets); (2) prognostic validity (predictive accuracy for 1-year mortality); and (3) genetic validity (UK Biobank), association with polygenic risk score (PRS) for heart failure-related traits (n=11), and single nucleotide polymorphisms (n=12). FINDINGS: We included 188 800, 124 262, and 9573 individuals with incident heart failure from CPRD, THIN, and UK Biobank, respectively, between Jan 1, 1998, and Jan 1, 2018. After identifying five clusters, we labelled heart failure subtypes as (1) early onset, (2) late onset, (3) atrial fibrillation related, (4) metabolic, and (5) cardiometabolic. In the external validity analysis, subtypes were similar across datasets (c-statistics: THIN model in CPRD ranged from 0·79 [subtype 3] to 0·94 [subtype 1], and CPRD model in THIN ranged from 0·79 [subtype 1] to 0·92 [subtypes 2 and 5]). In the prognostic validity analysis, 1-year all-cause mortality after heart failure diagnosis (subtype 1 0·20 [95% CI 0·14-0·25], subtype 2 0·46 [0·43-0·49], subtype 3 0·61 [0·57-0·64], subtype 4 0·11 [0·07-0·16], and subtype 5 0·37 [0·32-0·41]) differed across subtypes in CPRD and THIN data, as did risk of non-fatal cardiovascular diseases and all-cause hospitalisation. In the genetic validity analysis the atrial fibrillation-related subtype showed associations with the related PRS. Late onset and cardiometabolic subtypes were the most similar and strongly associated with PRS for hypertension, myocardial infarction, and obesity (p<0·0009). We developed a prototype app for routine clinical use, which could enable evaluation of effectiveness and cost-effectiveness. INTERPRETATION: Across four methods and three datasets, including genetic data, in the largest study of incident heart failure to date, we identified five machine learning-informed subtypes, which might inform aetiological research, clinical risk prediction, and the design of heart failure trials. FUNDING: European Union Innovative Medicines Initiative-2.


Subject(s)
Atrial Fibrillation , Heart Failure , Humans , Prognosis , Electronic Health Records , Heart Failure/diagnosis , Heart Failure/epidemiology , Machine Learning
3.
Sci Adv ; 9(17): eadd4984, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37126556

ABSTRACT

Dysfunction of either the right or left ventricle can lead to heart failure (HF) and subsequent morbidity and mortality. We performed a genome-wide association study (GWAS) of 16 cardiac magnetic resonance (CMR) imaging measurements of biventricular function and structure. Cis-Mendelian randomization (MR) was used to identify plasma proteins associating with CMR traits as well as with any of the following cardiac outcomes: HF, non-ischemic cardiomyopathy, dilated cardiomyopathy (DCM), atrial fibrillation, or coronary heart disease. In total, 33 plasma proteins were prioritized, including repurposing candidates for DCM and/or HF: IL18R (providing indirect evidence for IL18), I17RA, GPC5, LAMC2, PA2GA, CD33, and SLAF7. In addition, 13 of the 25 druggable proteins (52%; 95% confidence interval, 0.31 to 0.72) could be mapped to compounds with known oncological indications or side effects. These findings provide leads to facilitate drug development for cardiac disease and suggest that cardiotoxicities of several cancer treatments might represent mechanism-based adverse effects.


Subject(s)
Atrial Fibrillation , Cardiomyopathy, Dilated , Heart Failure , Neoplasms , Humans , Cardiotoxicity , Genome-Wide Association Study , Glypicans
4.
medRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066275

ABSTRACT

Background: As availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including as secondary findings. Methods: We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. Results: For 36/65 gene-disease pairs, loss-of-function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using CardiacG2P as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. Conclusions: Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is pre-requisite for scalable genomic testing.

5.
AMIA Annu Symp Proc ; 2021: 362-371, 2021.
Article in English | MEDLINE | ID: mdl-35308936

ABSTRACT

Objective: To establish and validate mappings between primary care clinical terminologies (Read Version 2, Clinical Terms Version 3) and Phecodes. Methods: We processed 123,662,421 primary care events from 230,096 UK Biobank (UKB) participants. We assessed the validity of the primary care-derived Phecodes by conducting PheWAS analyses for seven pre-selected SNPs in the UKB and compared with estimates from BioVU. Results: We mapped 92% of Read2 (n=10,834) and 91% of CTV3 (n=21,988) to 1,449 and 1,490 Phecodes. UKB PheWAS using Phecodes from primary care EHR and hospitalizations replicated all (n=22) previously-reported genotype-phenotype associations. When limiting Phecodes to primary care EHR, replication was 81% (n=18). Conclusion: We introduced a first version of mappings from Read2/CTV3 to Phecodes. The reference list of diseases provided by Phecodes can be extended, enabling researchers to leverage primary care EHR for high-throughput discovery research.


Subject(s)
Biological Specimen Banks , Electronic Health Records , Vocabulary, Controlled , Genome-Wide Association Study , Humans , Phenotype , Primary Health Care , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...