Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Nat Rev Endocrinol ; 20(1): 50-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37872302

ABSTRACT

The signals and structure of the tissues in which leukocytes reside critically mould leukocyte function and development and have challenged our fundamental understanding of how to define and categorize tissue-resident immune cells. One specialized tissue niche that has a powerful effect on immune cell function is adipose tissue. The field of adipose tissue leukocyte biology has expanded dramatically and has revealed how tissue niches can shape immune cell function and reshape them in a setting of metabolic stress, such as obesity. Most notably, adipose tissue macrophages and T cells are under intense investigation due to their contributions to adipose tissue in the lean and obese states. Both adipose tissue macrophages and T cells have features associated with the metabolic function of adipose tissue that are distinct from features of macrophages and T cells that are classically characterized in other tissues. This Review provides state-of-the-art understanding of adipose tissue macrophages and T cells and discusses how their unique niche can help us to better understand diversity in leukocyte responses.


Subject(s)
Adipose Tissue , T-Lymphocytes , Humans , Adipose Tissue/metabolism , Macrophages , Obesity/metabolism , Inflammation/metabolism
2.
Adipocyte ; 12(1): 2268261, 2023 12.
Article in English | MEDLINE | ID: mdl-37815174

ABSTRACT

Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.


Subject(s)
Adipocytes , Adipose Tissue , Humans , Adipocytes/metabolism , Adipogenesis/genetics , Hydrogels/metabolism , Phenotype , Lipids
3.
Am J Clin Nutr ; 118(1): 329-337, 2023 07.
Article in English | MEDLINE | ID: mdl-37230178

ABSTRACT

On September 7 and 8, 2022, Healthy Environment and Endocrine Disruptors Strategies, an Environmental Health Sciences program, convened a scientific workshop of relevant stakeholders involved in obesity, toxicology, or obesogen research to review the state of the science regarding the role of obesogenic chemicals that might be contributing to the obesity pandemic. The workshop's objectives were to examine the evidence supporting the hypothesis that obesogens contribute to the etiology of human obesity; to discuss opportunities for improved understanding, acceptance, and dissemination of obesogens as contributors to the obesity pandemic; and to consider the need for future research and potential mitigation strategies. This report details the discussions, key areas of agreement, and future opportunities to prevent obesity. The attendees agreed that environmental obesogens are real, significant, and a contributor at some degree to weight gain at the individual level and to the global obesity and metabolic disease pandemic at a societal level; moreover, it is at least, in theory, remediable.


Subject(s)
Endocrine Disruptors , Environmental Exposure , Humans , Environmental Exposure/adverse effects , Environmental Exposure/prevention & control , Endocrine Disruptors/toxicity , Obesity/epidemiology , Obesity/etiology , Obesity/metabolism , Weight Gain , Pandemics
4.
Sci Rep ; 13(1): 2651, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36788340

ABSTRACT

Obesity induces a chronic inflammatory state associated with changes in adipose tissue macrophages (ATMs). Macrophage scavenger receptor 1 (MSR1) has been implicated in the regulation of adipose tissue inflammation and diabetes pathogenesis; however, reports have been mixed on the contribution of MSR1 in obesity and glucose intolerance. We observed increased MSR1 expression in VAT of obese diabetic individuals compared to non-diabetic and single nuclear RNA sequencing identified macrophage-specific expression of MSR1 in human adipose tissue. We examined male Msr1-/- (Msr1KO) and WT controls and observed protection from obesity and AT inflammation in non-littermate Msr1KO mice. We then evaluated obese littermate Msr1+/- (Msr1HET) and Msr1KO mice. Both Msr1KO mice and Msr1HET mice became obese and insulin resistant when compared to their normal chow diet counterparts, but there was no Msr1-dependent difference in body weight, glucose metabolism, or insulin resistance. Flow cytometry revealed no significant differences between genotypes in ATM subtypes or proliferation in male and female mice. We observed increased frequency of proliferating ATMs in obese female compared to male mice. Overall, we conclude that while MSR1 is a biomarker of diabetes status in human adipose tissue, in mice Msr1 is not required for obesity-associated insulin resistance or ATM accumulation.


Subject(s)
Insulin Resistance , Obesity , Scavenger Receptors, Class A , Animals , Female , Male , Mice , Adipose Tissue/metabolism , Inflammation/metabolism , Insulin/metabolism , Insulin Resistance/genetics , Mice, Inbred C57BL , Obesity/complications , Obesity/genetics , Obesity/metabolism , Scavenger Receptors, Class A/metabolism
5.
Adipocyte ; 11(1): 665-675, 2022 12.
Article in English | MEDLINE | ID: mdl-36457256

ABSTRACT

Obesity-associated type 2 diabetes (DM) leads to adipose tissue dysfunction. Lumican is a proteoglycan implicated in obesity, insulin resistance (IR), and adipocyte dysfunction. Using human visceral adipose tissue (VAT) from subjects with and without DM, we studied lumican effects on adipocyte function. Lumican was increased in VAT and adipocytes in DM. Lumican knockdown in adipocytes decreased lipolysis and improved adipogenesis and insulin sensitivity in VAT adipocytes in DM, while treatment with human recombinant lumican increased lipolysis and impaired insulin-sensitivity in an ERK-dependent manner. We demonstrate that lumican impairs adipocyte metabolism, partially via ERK signalling, and is a potential target for developing adipose tissue-targeted therapeutics in DM.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Lumican/metabolism , Diabetes Mellitus, Type 2/metabolism , Adipocytes/metabolism , Lipolysis , Obesity/complications , Obesity/metabolism , Adipose Tissue/metabolism
6.
Mol Metab ; 66: 101642, 2022 12.
Article in English | MEDLINE | ID: mdl-36402403

ABSTRACT

BACKGROUND: Adipose tissue macrophages (ATMs) are a well characterized regulator of adipose tissue inflammatory tone. Previously defined by the M1 vs M2 classification, we now have a better understanding of ATM diversity that departs from the old paradigm and reports a spectrum of ATM function and phenotypes in both brown and white adipose tissue. SCOPE OF REVIEW: This review provides an updated overview of ATM activation and function, ATM diversity in humans and rodents, and novel ATM functions that contribute to metabolic homeostasis and disease. MAJOR CONCLUSIONS: While the paradigm that resident ATMs predominate in the lean state and obesity leads to the accumulation of lipid-associated and inflammatory ATMs still broadly remains rigorously supported, the details of this model continue to be refined and single cell data provide new insight into ATM subtypes and states.


Subject(s)
Adipose Tissue , Inflammation , Humans , Inflammation/metabolism , Adipose Tissue/metabolism , Macrophages/metabolism , Obesity/metabolism , Adipose Tissue, White/metabolism
7.
Diabetes ; 71(11): 2297-2312, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35983955

ABSTRACT

The innate immune kinase TBK1 (TANK-binding kinase 1) responds to microbial-derived signals to initiate responses against viral and bacterial pathogens. More recent work implicates TBK1 in metabolism and tumorigenesis. The kinase mTOR (mechanistic target of rapamycin) integrates diverse environmental cues to control fundamental cellular processes. Our prior work demonstrated in cells that TBK1 phosphorylates mTOR (on S2159) to increase mTORC1 and mTORC2 catalytic activity and signaling. Here we investigate a role for TBK1-mTOR signaling in control of glucose metabolism in vivo. We find that mice with diet-induced obesity (DIO) but not lean mice bearing a whole-body "TBK1-resistant" Mtor S2159A knock-in allele (MtorA/A) display exacerbated hyperglycemia and systemic insulin resistance with no change in energy balance. Mechanistically, Mtor S2159A knock-in in DIO mice reduces mTORC1 and mTORC2 signaling in response to insulin and innate immune agonists, reduces anti-inflammatory gene expression in adipose tissue, and blunts anti-inflammatory macrophage M2 polarization, phenotypes shared by mice with tissue-specific inactivation of TBK1 or mTOR complexes. Tissues from DIO mice display elevated TBK1 activity and mTOR S2159 phosphorylation relative to lean mice. We propose a model whereby obesity-associated signals increase TBK1 activity and mTOR phosphorylation, which boost mTORC1 and mTORC2 signaling in parallel to the insulin pathway, thereby attenuating insulin resistance to improve glycemic control during diet-induced obesity.


Subject(s)
Hyperglycemia , Insulin Resistance , Mice , Animals , Insulin Resistance/genetics , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2 , Sirolimus/pharmacology , Insulin/metabolism , Obesity/genetics , Mice, Obese , Hyperglycemia/genetics , Glucose , Protein Serine-Threonine Kinases/genetics
8.
Cell Metab ; 34(9): 1359-1376.e7, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35973424

ABSTRACT

The mammalian liver comprises heterogeneous cell types within its tissue microenvironment that undergo pathophysiological reprogramming in disease states, such as non-alcoholic steatohepatitis (NASH). Patients with NASH are at an increased risk for the development of hepatocellular carcinoma (HCC). However, the molecular and cellular nature of liver microenvironment remodeling that links NASH to liver carcinogenesis remains obscure. Here, we show that diet-induced NASH is characterized by the induction of tumor-associated macrophage (TAM)-like macrophages and exhaustion of cytotoxic CD8+ T cells in the liver. The adipocyte-derived endocrine factor Neuregulin 4 (NRG4) serves as a hormonal checkpoint that restrains this pathological reprogramming during NASH. NRG4 deficiency exacerbated the induction of tumor-prone liver immune microenvironment and NASH-related HCC, whereas transgenic NRG4 overexpression elicited protective effects in mice. In a therapeutic setting, recombinant NRG4-Fc fusion protein exhibited remarkable potency in suppressing HCC and prolonged survival in the treated mice. These findings pave the way for therapeutic intervention of liver cancer by targeting the NRG4 hormonal checkpoint.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Neuregulins/metabolism , Non-alcoholic Fatty Liver Disease , Animals , Carcinoma, Hepatocellular/metabolism , Liver/metabolism , Liver Neoplasms/drug therapy , Mammals/metabolism , Mice , Neuregulins/therapeutic use , Non-alcoholic Fatty Liver Disease/metabolism , Tumor Microenvironment
9.
Obesity (Silver Spring) ; 30(9): 1818-1830, 2022 09.
Article in English | MEDLINE | ID: mdl-35927796

ABSTRACT

OBJECTIVE: The intersection between immunology and metabolism contributes to the pathogenesis of obesity-associated metabolic diseases as well as molecular control of inflammatory responses. The metabolite itaconate and the cell-permeable derivatives have robust anti-inflammatory effects; therefore, it is hypothesized that cis-aconitate decarboxylase (Acod1)-produced itaconate has a protective, anti-inflammatory effect during diet-induced obesity and metabolic disease. METHODS: Wild-type and Acod1-/- mice were subjected to diet-induced obesity. Glucose metabolism was analyzed by glucose tolerance tests, insulin tolerance tests, and indirect calorimetry. Gene expression and transcriptome analysis was performed using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and RNA sequencing. RESULTS: Wild-type and Acod1-/- mice on high-fat diet had equivalent weight gain, but Acod1-/- mice had impaired glucose metabolism. Insulin tolerance tests and glucose tolerance tests after 12 weeks on high-fat diet revealed significantly higher blood glucose levels in Acod1-/- mice. This was associated with significant enrichment of inflammatory gene sets and a reduction in genes related to adipogenesis and fatty acid metabolism. Analysis of naive Acod1-/- mice showed a significant increase in fat deposition at 3 and 6 months of age and obesity and insulin resistance by 12 months. CONCLUSIONS: The data show that Acod1 has an important role in the regulation of glucose homeostasis and obesity under normal and high-fat diet conditions.


Subject(s)
Insulin Resistance , Insulins , Animals , Anti-Inflammatory Agents/therapeutic use , Carboxy-Lyases , Diet, High-Fat , Glucose/metabolism , Homeostasis , Insulin , Insulin Resistance/genetics , Insulins/therapeutic use , Mice , Mice, Inbred C57BL , Obesity/complications
10.
Am J Respir Cell Mol Biol ; 67(2): 155-163, 2022 08.
Article in English | MEDLINE | ID: mdl-35914321

ABSTRACT

This report presents the proceedings from a workshop titled "Microbiome, Metabolism and Immunoregulation of Asthma" that was held virtually May 13 and 14, 2021. The workshop was jointly sponsored by the American Thoracic Society (Assembly on Allergy, Immunology, and Inflammation) and the National Institute of Allergy and Infectious Diseases. It convened an interdisciplinary group of experts with backgrounds in asthma immunology, microbiome science, metabolomics, computational biology, and translational pulmonary research. The main purpose was to identify key scientific gaps and needs to further advance research on microbial and metabolic mechanisms that may contribute to variable immune responses and disease heterogeneity in asthma. Discussions were structured around several topics, including 1) immune and microbial mechanisms of asthma pathogenesis in murine models, 2) the role of microbes in pediatric asthma exacerbations, 3) dysregulated metabolic pathways in asthma associated with obesity, 4) metabolism effects on macrophage function in adipose tissue and the lungs, 5) computational approaches to dissect microbiome-metabolite links, and 6) potential confounders of microbiome-disease associations in human studies. This report summarizes the major points of discussion, which included identification of specific knowledge gaps, challenges, and suggested directions for future research. These include questions surrounding mechanisms by which microbiota and metabolites shape host health versus an allergic or asthmatic state; direct and indirect influences of other biological factors, exposures, and comorbidities on these interactions; and ongoing technical and analytical gaps for clinical translation.


Subject(s)
Asthma , Hypersensitivity , Microbiota , Animals , Asthma/etiology , Child , Humans , Hypersensitivity/complications , Immunity , Mice , National Institute of Allergy and Infectious Diseases (U.S.) , United States
11.
JCI Insight ; 7(3)2022 02 08.
Article in English | MEDLINE | ID: mdl-34990410

ABSTRACT

Increased adipose tissue macrophages (ATMs) correlate with metabolic dysfunction in humans and are causal in development of insulin resistance in mice. Recent bulk and single-cell transcriptomics studies reveal a wide spectrum of gene expression signatures possible for macrophages that depends on context, but the signatures of human ATM subtypes are not well defined in obesity and diabetes. We profiled 3 prominent ATM subtypes from human adipose tissue in obesity and determined their relationship to type 2 diabetes. Visceral adipose tissue (VAT) and s.c. adipose tissue (SAT) samples were collected from diabetic and nondiabetic obese participants to evaluate cellular content and gene expression. VAT CD206+CD11c- ATMs were increased in diabetic participants, were scavenger receptor-rich with low intracellular lipids, secreted proinflammatory cytokines, and diverged significantly from 2 CD11c+ ATM subtypes, which were lipid-laden, were lipid antigen presenting, and overlapped with monocyte signatures. Furthermore, diabetic VAT was enriched for CD206+CD11c- ATM and inflammatory signatures, scavenger receptors, and MHC II antigen presentation genes. VAT immunostaining found CD206+CD11c- ATMs concentrated in vascularized lymphoid clusters adjacent to CD206-CD11c+ ATMs, while CD206+CD11c+ were distributed between adipocytes. Our results show ATM subtype-specific profiles that uniquely contribute to the phenotypic variation in obesity.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 2/genetics , Gene Expression Regulation , Insulin Resistance/genetics , Macrophages/metabolism , Membrane Glycoproteins/genetics , Obesity/genetics , Receptors, Immunologic/genetics , Adipocytes/metabolism , Adipose Tissue/pathology , Adult , Aged , Aged, 80 and over , DNA/genetics , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/pathology , Female , Follow-Up Studies , Humans , Macrophages/pathology , Male , Membrane Glycoproteins/biosynthesis , Middle Aged , Obesity/metabolism , Obesity/pathology , Receptors, Immunologic/biosynthesis , Time Factors , Young Adult
12.
Obesity (Silver Spring) ; 29(11): 1868-1881, 2021 11.
Article in English | MEDLINE | ID: mdl-34549547

ABSTRACT

OBJECTIVE: Excess dietary fat and sodium (NaCl) are both associated with obesity and metabolic dysfunction. In mice, high NaCl has been shown to block high-fat (HF) diet-induced weight gain. Here, the impact of an HF/NaCl diet on metabolic function in the absence of obesity was investigated. METHODS: Wild-type mice were administered chow, NaCl (4%), HF, and HF/NaCl diets. Metabolic analysis was performed by measuring fasted blood glucose and insulin levels and by glucose tolerance test and insulin tolerance test. RESULTS: After 10 weeks on diets, male and female mice on the HF diet gained weight, and HF/NaCl mice had significantly reduced weight gain similar to chow-fed mice. In the absence of obesity, HF/NaCl mice had significantly elevated fasting blood glucose and impaired glucose control during glucose tolerance tests. Both NaCl and HF/NaCl mice had decreased pancreas and ß-cell mass. Administration of NaCl in drinking water did not protect mice from HF-diet-induced weight gain and obesity. Further analysis revealed that longer administration of HF/NaCl diets for 20 weeks resulted in significant weight gain and insulin resistance. CONCLUSIONS: The data demonstrate that despite early inhibitory effects on fat deposition and weight gain, an HF/NaCl diet does not prevent the metabolic consequences of HF diet consumption.


Subject(s)
Blood Glucose , Insulin Resistance , Animals , Diet, High-Fat/adverse effects , Female , Insulin , Male , Mice , Mice, Inbred C57BL , Obesity , Sodium
13.
Sci Rep ; 11(1): 17394, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462518

ABSTRACT

Dysfunctional visceral adipose tissue (VAT) in obesity is associated with type 2 diabetes (DM) but underlying mechanisms remain unclear. Our objective in this discovery analysis was to identify genes and proteins regulated by DM to elucidate aberrant cellular metabolic and signaling mediators. We performed label-free proteomics and RNA-sequencing analysis of VAT from female bariatric surgery subjects with DM and without DM (NDM). We quantified 1965 protein groups, 23 proteins, and 372 genes that were differently abundant in DM vs. NDM VAT. Proteins downregulated in DM were related to fatty acid synthesis and mitochondrial function (fatty acid synthase, FASN; dihydrolipoyl dehydrogenase, mitochondrial, E3 component, DLD; succinate dehydrogenase-α, SDHA) while proteins upregulated in DM were associated with innate immunity and transcriptional regulation (vitronectin, VTN; endothelial protein C receptor, EPCR; signal transducer and activator of transcription 5B, STAT5B). Transcriptome indicated defects in innate inflammation, lipid metabolism, and extracellular matrix (ECM) function, and components of complement classical and alternative cascades. The VAT proteome and transcriptome shared 13 biological processes impacted by DM, related to complement activation, cell proliferation and migration, ECM organization, lipid metabolism, and gluconeogenesis. Our data revealed a marked effect of DM in downregulating FASN. We also demonstrate enrichment of complement factor B (CFB), coagulation factor XIII A chain (F13A1), thrombospondin 1 (THBS1), and integrins at mRNA and protein levels, albeit with lower q-values and lack of Western blot or PCR confirmation. Our findings suggest putative mechanisms of VAT dysfunction in DM.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Intra-Abdominal Fat/metabolism , Obesity/pathology , Proteome/metabolism , Transcriptome , Bariatric Surgery , Diabetes Mellitus, Type 2/complications , Down-Regulation , Extracellular Matrix/metabolism , Female , Humans , Lipid Metabolism/genetics , Mitochondria/genetics , Obesity/complications , Principal Component Analysis , Up-Regulation
14.
JCI Insight ; 6(8)2021 04 22.
Article in English | MEDLINE | ID: mdl-33724954

ABSTRACT

Despite studies implicating adipose tissue T cells (ATT) in the initiation and persistence of adipose tissue inflammation, fundamental gaps in knowledge regarding ATT function impedes progress toward understanding how obesity influences adaptive immunity. We hypothesized that ATT activation and function would have tissue-resident-specific properties and that obesity would potentiate their inflammatory properties. We assessed ATT activation and inflammatory potential within mouse and human stromal vascular fraction (SVF). Surprisingly, murine and human ATTs from obese visceral white adipose tissue exhibited impaired inflammatory characteristics upon stimulation. Both environmental and cell-intrinsic factors are implicated in ATT dysfunction. Soluble factors from obese SVF inhibit ATT activation. Additionally, chronic signaling from macrophage major histocompatibility complex II (MHCII) is necessary for ATT impairment in obese adipose tissue but is independent of increased PD1 expression. To assess intracellular signaling mechanisms responsible for ATT inflammation impairments, single-cell RNA sequencing of ATTs was performed. ATTs in obese adipose tissue exhibit enrichment of genes characteristic of T cell exhaustion and increased expression of coinhibitory receptor Btla. In sum, this work suggests that obesity-induced ATTs have functional characteristics and gene expression resembling T cell exhaustion induced by local soluble factors and cell-to-cell interactions in adipose tissue.


Subject(s)
Adaptive Immunity/immunology , Adipose Tissue/immunology , Intra-Abdominal Fat/immunology , Obesity/immunology , T-Lymphocytes/immunology , Adipose Tissue, White/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/immunology , Humans , Macrophages/immunology , Male , Mice , Middle Aged , Programmed Cell Death 1 Receptor/immunology , Receptors, Immunologic/immunology , T-Lymphocyte Subsets/immunology
15.
Am J Trop Med Hyg ; 104(4): 1484-1492, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33606666

ABSTRACT

An outbreak of SARS-CoV-2 has led to a global pandemic affecting virtually every country. As of August 31, 2020, globally, there have been approximately 25,500,000 confirmed cases and 850,000 deaths; in the United States (50 states plus District of Columbia), there have been more than 6,000,000 confirmed cases and 183,000 deaths. We propose a Bayesian mixture model to predict and monitor COVID-19 mortality across the United States. The model captures skewed unimodal (prolonged recovery) or multimodal (multiple surges) curves. The results show that across all states, the first peak dates of mortality varied between April 4, 2020 for Alaska and June 18, 2020 for Arkansas. As of August 31, 2020, 31 states had a clear bimodal curve showing a strong second surge. The peak date for a second surge ranged from July 1, 2020 for Virginia to September 12, 2020 for Hawaii. The first peak for the United States occurred about April 16, 2020-dominated by New York and New Jersey-and a second peak on August 6, 2020-dominated by California, Texas, and Florida. Reliable models for predicting the COVID-19 pandemic are essential to informing resource allocation and intervention strategies. A Bayesian mixture model was able to more accurately predict the shape of the mortality curves across the United States than other models, including the timing of multiple peaks. However, given the dynamic nature of the pandemic, it is important that the results be updated regularly to identify and better monitor future waves, and characterize the epidemiology of the pandemic.


Subject(s)
Bayes Theorem , COVID-19/mortality , SARS-CoV-2 , Humans , United States/epidemiology
16.
Front Endocrinol (Lausanne) ; 12: 780300, 2021.
Article in English | MEDLINE | ID: mdl-35111136

ABSTRACT

The risk of obesity in adulthood is subject to programming in the womb. Maternal obesity contributes to programming of obesity and metabolic disease risk in the adult offspring. With the increasing prevalence of obesity in women of reproductive age there is a need to understand the ramifications of maternal high-fat diet (HFD) during pregnancy on offspring's metabolic heath trajectory. In the present study, we determined the long-term metabolic outcomes on adult male and female offspring of dams fed with HFD during pregnancy. C57BL/6J dams were fed either Ctrl or 60% Kcal HFD for 4 weeks before and throughout pregnancy, and we tested glucose homeostasis in the adult offspring. Both Ctrl and HFD-dams displayed increased weight during pregnancy, but HFD-dams gained more weight than Ctrl-dams. Litter size and offspring birthweight were not different between HFD-dams or Ctrl-dams. A significant reduction in random blood glucose was evident in newborns from HFD-dams compared to Ctrl-dams. Islet morphology and alpha-cell fraction were normal but a reduction in beta-cell fraction was observed in newborns from HFD-dams compared to Ctrl-dams. During adulthood, male offspring of HFD-dams displayed comparable glucose tolerance under normal chow. Male offspring re-challenged with HFD displayed glucose intolerance transiently. Adult female offspring of HFD-dams demonstrated normal glucose tolerance but displayed increased insulin resistance relative to controls under normal chow diet. Moreover, adult female offspring of HFD-dams displayed increased insulin secretion in response to high-glucose treatment, but beta-cell mass were comparable between groups. Together, these data show that maternal HFD at pre-conception and during gestation predisposes the female offspring to insulin resistance in adulthood.


Subject(s)
Blood Glucose/metabolism , Diet, High-Fat , Glucose Intolerance/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Maternal Exposure , Obesity, Maternal/metabolism , Prenatal Exposure Delayed Effects/metabolism , Animals , Animals, Newborn , Birth Weight , Female , Insulin-Secreting Cells/pathology , Litter Size , Male , Mice , Organ Size , Pregnancy
17.
Obesity (Silver Spring) ; 29(4): 645-653, 2021 04.
Article in English | MEDLINE | ID: mdl-33270351

ABSTRACT

Increased morbidity and mortality from coronavirus disease 2019 (COVID-19) in people with obesity have illuminated the intersection of obesity with impaired responses to infections. Although data on mechanisms by which COVID-19 impacts health are being rapidly generated, there is a critical need to better understand the pulmonary, vascular, metabolic, and immunologic aspects that drive the increased risk for complications from COVID-19 in people with obesity. This review provides a broad overview of the intersection between COVID-19 and the physiology of obesity in order to highlight potential mechanisms by which COVID-19 disease severity is increased by obesity and identify areas for future investigation toward developing tailored therapy for people with obesity who develop COVID-19.


Subject(s)
COVID-19/pathology , Obesity/complications , Humans , Morbidity , Obesity/virology
18.
Am J Physiol Heart Circ Physiol ; 320(1): H323-H337, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33164548

ABSTRACT

Interleukin-4 receptor α (IL4Rα) signaling plays an important role in cardiac remodeling during myocardial infarction (MI). However, the target cell type(s) of IL4Rα signaling during this remodeling remains unclear. Here, we investigated the contribution of endogenous myeloid-specific IL4Rα signaling in cardiac remodeling post-MI. We established a murine myeloid-specific IL4Rα knockout (MyIL4RαKO) model with LysM promoter-driven Cre recombination. Macrophages from MyIL4RαKO mice showed significant downregulation of alternatively activated macrophage markers but an upregulation of classical activated macrophage markers both in vitro and in vivo, indicating the successful inactivation of IL4Rα signaling in macrophages. To examine the role of myeloid IL4Rα during MI, we subjected MyIL4RαKO and littermate floxed control (FC) mice to MI. We found that cardiac function was significantly impaired as a result of myeloid-specific IL4Rα deficiency. This deficiency resulted in a dysregulated inflammatory response consisting of decreased production of anti-inflammatory cytokines. Myeloid IL4Rα deficiency also led to reduced collagen 1 deposition and an imbalance of matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs), with upregulated MMPs and downregulated TIMPs, which resulted in insufficient fibrotic remodeling. In conclusion, this study identifies that myeloid-specific IL4Rα signaling regulates inflammation and fibrotic remodeling during MI. Therefore, myeloid-specific activation of IL4Rα signaling could offer protective benefits after MI.NEW & NOTEWORTHY This study showed, for the first time, the role of endogenous IL4Rα signaling in myeloid cells during cardiac remodeling and the underlying mechanisms. We identified myeloid cells are the critical target cell types of IL4Rα signaling during cardiac remodeling post-MI. Deficiency of myeloid IL4Rα signaling causes deteriorated cardiac function post-MI, due to dysregulated inflammation and insufficient fibrotic remodeling. This study sheds light on the potential of activating myeloid-specific IL4Rα signaling to modify remodeling post-MI. This brings hope to patients with MI and diminishes side effects by cell type-specific instead of whole body treatment.


Subject(s)
Cytokines/metabolism , Inflammation Mediators/metabolism , Macrophages/metabolism , Myocardial Infarction/metabolism , Myocardium/metabolism , Receptors, Cell Surface/metabolism , Ventricular Function, Left , Ventricular Remodeling , Animals , Cells, Cultured , Disease Models, Animal , Fibrosis , Macrophage Activation , Macrophages/pathology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/pathology , Receptors, Cell Surface/deficiency , Receptors, Cell Surface/genetics , Signal Transduction
19.
Sci Rep ; 10(1): 20423, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235234

ABSTRACT

Obesity-related type 2 diabetes (DM) is a major public health concern. Adipose tissue metabolic dysfunction, including fibrosis, plays a central role in DM pathogenesis. Obesity is associated with changes in adipose tissue extracellular matrix (ECM), but the impact of these changes on adipose tissue mechanics and their role in metabolic disease is poorly defined. This study utilized atomic force microscopy (AFM) to quantify difference in elasticity between human DM and non-diabetic (NDM) visceral adipose tissue. The mean elastic modulus of DM adipose tissue was twice that of NDM adipose tissue (11.50 kPa vs. 4.48 kPa) to a 95% confidence level, with significant variability in elasticity of DM compared to NDM adipose tissue. Histologic and chemical measures of fibrosis revealed increased hydroxyproline content in DM adipose tissue, but no difference in Sirius Red staining between DM and NDM tissues. These findings support the hypothesis that fibrosis, evidenced by increased elastic modulus, is enhanced in DM adipose tissue, and suggest that measures of tissue mechanics may better resolve disease-specific differences in adipose tissue fibrosis compared with histologic measures. These data demonstrate the power of AFM nanoindentation to probe tissue mechanics, and delineate the impact of metabolic disease on the mechanical properties of adipose tissue.


Subject(s)
Diabetes Mellitus, Type 2/diagnostic imaging , Intra-Abdominal Fat/physiopathology , Microscopy, Atomic Force/methods , Obesity/diagnostic imaging , Adult , Biomechanical Phenomena , Diabetes Mellitus, Type 2/metabolism , Elastic Modulus , Extracellular Matrix/metabolism , Female , Humans , Hydroxyproline/metabolism , Intra-Abdominal Fat/diagnostic imaging , Intra-Abdominal Fat/metabolism , Middle Aged , Obesity/complications , Obesity/metabolism , Obesity/physiopathology
20.
Mol Metab ; 42: 101078, 2020 12.
Article in English | MEDLINE | ID: mdl-32919095

ABSTRACT

OBJECTIVE: Canonical Wnt/ß-catenin signaling is a well-studied endogenous regulator of mesenchymal cell fate determination, promoting osteoblastogenesis and inhibiting adipogenesis. However, emerging genetic evidence in humans links a number of Wnt pathway members to body fat distribution, obesity, and metabolic dysfunction, suggesting that this pathway also functions in adipocytes. Recent studies in mice have uncovered compelling evidence that the Wnt signaling pathway plays important roles in adipocyte metabolism, particularly under obesogenic conditions. However, complexities in Wnt signaling and differences in experimental models and approaches have thus far limited our understanding of its specific roles in this context. METHODS: To investigate roles of the canonical Wnt pathway in the regulation of adipocyte metabolism, we generated adipocyte-specific ß-catenin (ß-cat) knockout mouse and cultured cell models. We used RNA sequencing, ChIP sequencing, and molecular approaches to assess expression of Wnt targets and lipogenic genes. We then used functional assays to evaluate effects of ß-catenin deficiency on adipocyte metabolism, including lipid and carbohydrate handling. In mice maintained on normal chow and high-fat diets, we assessed the cellular and functional consequences of adipocyte-specific ß-catenin deletion on adipose tissues and systemic metabolism. RESULTS: We report that in adipocytes, the canonical Wnt/ß-catenin pathway regulates de novo lipogenesis (DNL) and fatty acid monounsaturation. Further, ß-catenin mediates effects of Wnt signaling on lipid metabolism in part by transcriptional regulation of Mlxipl and Srebf1. Intriguingly, adipocyte-specific loss of ß-catenin is sensed and defended by CD45-/CD31- stromal cells to maintain tissue-wide Wnt signaling homeostasis in chow-fed mice. With long-term high-fat diet, this compensatory mechanism is overridden, revealing that ß-catenin deletion promotes resistance to diet-induced obesity and adipocyte hypertrophy and subsequent protection from metabolic dysfunction. CONCLUSIONS: Taken together, our studies demonstrate that Wnt signaling in adipocytes is required for lipogenic gene expression, de novo lipogenesis, and lipid desaturation. In addition, adipose tissues rigorously defend Wnt signaling homeostasis under standard nutritional conditions, such that stromal-vascular cells sense and compensate for adipocyte-specific loss. These findings underscore the critical importance of this pathway in adipocyte lipid metabolism and adipose tissue function.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Wnt Signaling Pathway/physiology , Adipocytes/physiology , Adipogenesis/physiology , Adipose Tissue/physiology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Cell Differentiation , Cells, Cultured , Gene Expression/genetics , Gene Expression Regulation/genetics , Lipid Metabolism , Lipogenesis/physiology , Mice , Mice, Knockout , Obesity , Sterol Regulatory Element Binding Protein 1 , Stromal Cells/metabolism , Wnt Signaling Pathway/drug effects , Wnt Signaling Pathway/genetics , Wnt1 Protein/metabolism , beta Catenin/genetics , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...