Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Microbiol Res ; 284: 127708, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38599021

ABSTRACT

Climate change intensifies soil salinization and jeopardizes the development of crops worldwide. The accumulation of salts in plant tissue activates the defense system and triggers ethylene production thus restricting cell division. We hypothesize that the inoculation of plant growth-promoting bacteria (PGPB) producing ACC (1-aminocyclopropane-1-carboxylate) deaminase favors the development of arbuscular mycorrhizal fungi (AMF), promoting the growth of maize plants under saline stress. We investigated the efficacy of individual inoculation of PGPB, which produce ACC deaminase, as well as the co-inoculation of PGPB with Rhizophagus clarus on maize plant growth subjected to saline stress. The isolates were acquired from the bulk and rhizospheric soil of Mimosa bimucronata (DC.) Kuntze in a temporary pond located in Pernambuco State, Brazil. In the first greenhouse experiment, 10 halophilic PGPB were inoculated into maize at 0, 40 and 80 mM of NaCl, and in the second experiment, the PGPB that showed the best performance were co-inoculated with R. clarus in maize under the same conditions as in the first experiment. Individual PGPB inoculation benefited the number of leaves, stem diameter, root and shoot dry mass, and the photosynthetic pigments. Inoculation with PGPB 28-10 Pseudarthrobacter enclensis, 24-1 P. enclensis and 52 P. chlorophenolicus increased the chlorophyll a content by 138%, 171%, and 324% at 0, 40 and 80 mM NaCl, respectively, comparing to the non-inoculated control. We also highlight that the inoculation of PGPB 28-10, 28-7 Arthrobacter sp. and 52 increased the content of chlorophyll b by 72%, 98%, and 280% and carotenoids by 82%, 98%, and 290% at 0, 40 and 80 mM of NaCl, respectively. Co-inoculation with PGPB 28-7, 46-1 Leclercia tamurae, 70 Artrobacter sp., and 79-1 Micrococcus endophyticus significantly increased the rate of mycorrhizal colonization by roughly 50%. Furthermore, co-inoculation promoted a decrease in the accumulation of Na and K extracted from plant tissue, with an increase in salt concentration, from 40 mM to 80 mM, also favoring the establishment and development of R. clarus. In addition, co-inoculation of these PGPB with R. clarus promoted maize growth and increased plant biomass through osmoregulation and protection of the photosynthetic apparatus. The tripartite symbiosis (plant-fungus-bacterium) is likely to reprogram metabolic pathways that improve maize growth and crop yield, suggesting that the AMF-PGPB consortium can minimize damages caused by saline stress.


Subject(s)
Bacteria , Carbon-Carbon Lyases , Mycorrhizae , Plant Roots , Soil Microbiology , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Mycorrhizae/physiology , Carbon-Carbon Lyases/metabolism , Plant Roots/microbiology , Plant Roots/growth & development , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Salt Stress , Chlorophyll/metabolism , Glomeromycota/physiology , Salt Tolerance , Photosynthesis , Rhizosphere , Sodium Chloride/metabolism , Plant Leaves/microbiology , Soil/chemistry
2.
Plants (Basel) ; 12(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36903986

ABSTRACT

Changes in soil fungal communities caused by land use have not been sufficiently studied in South American Andosols, which are considered key food production areas. Since fungal communities play an important role in soil functionality, this study analysed 26 soil samples of Andosols collected from locations devoted to conservation, agriculture and mining activities in Antioquia, Colombia, to establish differences between fungal communities as indicators of soil biodiversity loss using Illumina MiSeq metabarcoding on nuclear ribosomal ITS2 region. A non-metric multidimensional scaling allowed to explore driver factors of changes in fungal communities, while the significance of these variations was assessed by PERMANOVA. Furthermore, the effect size of land use over relevant taxa was quantified. Our results suggest a good coverage of fungal diversity with a detection of 353,312 high-quality ITS2 sequences. We found strong correlations of Shannon and Fisher indexes with dissimilarities on fungal communities (r = 0.94). These correlations allow grouping soil samples according to land use. Variations in temperature, air humidity and organic matter content lead to changes in abundances of relevant orders (Wallemiales and Trichosporonales). The study highlights specific sensitivities of fungal biodiversity features in tropical Andosols, which may serve as a basis for robust assessments of soil quality in the region.

3.
PeerJ ; 11: e14651, 2023.
Article in English | MEDLINE | ID: mdl-36650841

ABSTRACT

The biogeographic region of Argentinean Puna mainly extends at elevations higher than 3,000 m within the Andean Plateau and hosts diverse ecological communities highly adapted to extreme aridity and low temperatures. Soils of Puna are typically poorly evolved and geomorphology is shaped by drainage networks, resulting in highly vegetated endorheic basins and hypersaline basins known as salar or salt flats. Local communities rely on soil fertility for agricultural practices and on pastures for livestock rearing. From this perspective, investigating the scarcely explored microbiological diversity of these soils as indicators of ecosystems functioning might help to predict the fragility of these harsh environments. In this study we collected soil samples from 28 points, following a nested design within three different macro-habitats, i.e., Puna grassland, hypersaline salar and family-run crop fields. Total fungi and arbuscular mycorrhizal fungi (AMF) occurrence were analyzed using eDNA sequencing. In addition, the significance of soil salinity and organic matter content as significant predictors of AMF occurrence, was assessed through Generalized Linear Mixed Modeling. We also investigated whether intensive grazing by cattle and lama in Puna grasslands may reduce the presence of AMF in these highly disturbed soils, driving or not major ecological changes, but no consistent results were found, suggesting that more specific experiments and further investigations may address the question more specifically. Finally, to predict the suitability for AMF in the different macro-habitats, Species Distribution Modeling (SDM) was performed within an environmental coherent area comprising both the phytogeographic regions of Puna and Altoandino. We modeled AMF distribution with a maximum entropy approach, including bioclimatic and edaphic predictors and obtaining maps of environmental suitability for AMF within the predicted areas. To assess the impact of farming on AMF occurrence, we set a new series of models excluding the cultivated Chaupi Rodeo samples. Overall, SDM predicted a lower suitability for AMF in hypersaline salar areas, while grassland habitats and a wider temperature seasonality range appear to be factors significantly related to AMF enrichment, suggesting a main role of seasonal dynamics in shaping AMF communities. The highest abundance of AMF was observed in Vicia faba crop fields, while potato fields yielded a very low AMF occurrence. The models excluding the cultivated Chaupi Rodeo samples highlighted that if these cultivated areas had theoretically remained unmanaged habitats of Puna and Altoandino, then large-scale soil features and local bioclimatic constraints would likely support a lower suitability for AMF. Using SDM we evidenced the influence of bioclimatic, edaphic and anthropic predictors in shaping AMF occurrence and highlighted the relevance of considering human activities to accurately predict AMF distribution.


Subject(s)
Mycorrhizae , Humans , Animals , Cattle , Mycorrhizae/genetics , Soil , Ecosystem , Entropy , Agriculture/methods
4.
Sci Total Environ ; 822: 153640, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35124050

ABSTRACT

Constructed wetlands (CWs) are used to water treatment worldwide, however their application at high-altitude is poorly studied. In order to survive mountain winters, CWs rely on native flora and associated microbial communities. However, the choice of plant-microbes pairs more suitable for water treatment is challenging in alpine environments. Using a metagenomic approach, we investigated the composition of prokaryotes and fungal communities, through extensive sampling inside a constructed wetland in the SW-Alps. Best performing plant species were searched among those hosting the most diverse and resilient microbial communities and to this goal, we analysed them in the natural environment also. Our results showed that microbial communities were less diverse in the CW than at natural conditions, and they differed from plant to plant, revealing a clear variation in taxonomic composition between forbs and gramineous plants. Carex rostrata, Deschampsia caespitosa and Rumex alpinus hosted bacteria very active in N-cycles. Moreover, fungal and prokaryotic communities associated to R. alpinus (Polygonaceae) turned to be the richest and stable among the studied species. In our opinion, this species should be prioritized in CWs at high elevations, also in consideration of its low maintenance requirements.


Subject(s)
Carex Plant , Microbiota , Water Purification , Bacteria/genetics , Waste Disposal, Fluid/methods , Wastewater , Wetlands
5.
Plants (Basel) ; 10(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34579336

ABSTRACT

Low arbuscular-mycorrhizal (AM) sporulation in arid field soils limits our knowledge of indigenous species when diversity studies are based only on spore morphology. Our aim was to use different approaches (i.e., spore morphological approach and PCR-SSCP (single-strand-conformation-polymorphism) analysis after trap plant multiplication strategies to improve the knowledge of the current richness of glomalean AM fungi (Glomerales; Glomeromycota) from the Argentine Puna. Indigenous propagules from two pristine sites at 3870 and 3370 m of elevation were multiplied using different host plants; propagation periods (2-6 months), and subculture cycles (1; 2; or 3) from 5 to 13 months. The propagule multiplication experiment allowed the detection of different glomoid taxa of Funneliformis spp. and Rhizoglomus spp., which were considered cryptic species since they had never been found in Puna soils before. On the other hand; almost all the generalist species previously described were recovered from cultures; except for Glomus ambisporum. Both plant host selection and culture times are critical for Glomerales multiplication. The SSCP analysis complemented the morphological approach and showed a high variability of Glomus at each site; revealing the presence of Funneliformis mosseae. This study demonstrates that AMF trap culture (TC) is a useful strategy for improving the analysis of AM fungal diversity/richness in the Argentinean highlands.

6.
Int J Mol Sci ; 22(6)2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33809189

ABSTRACT

Plant specialized metabolites (SMs) play an important role in the interaction with the environment and are part of the plant defense response. These natural products are volatile, semi-volatile and non-volatile compounds produced from common building blocks deriving from primary metabolic pathways and rapidly evolved to allow a better adaptation of plants to environmental cues. Specialized metabolites include terpenes, flavonoids, alkaloids, glucosinolates, tannins, resins, etc. that can be used as phytochemicals, food additives, flavoring agents and pharmaceutical compounds. This review will be focused on Mediterranean crop plants as a source of SMs, with a special attention on the strategies that can be used to modulate their production, including abiotic stresses, interaction with beneficial soil microorganisms and novel genetic approaches.


Subject(s)
Biological Products/metabolism , Crops, Agricultural/metabolism , Disease Resistance/genetics , Secondary Metabolism/genetics , Crops, Agricultural/growth & development , Flavonoids/metabolism , Humans , Mediterranean Region , Metabolic Networks and Pathways/genetics , Phytochemicals/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Stress, Physiological/drug effects , Terpenes/metabolism
7.
J Fungi (Basel) ; 7(1)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33445528

ABSTRACT

Soil fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbiotic associations with plant roots and act as biofertilizers by enhancing plant nutrients and water uptake. Information about the AMF association with Crocus sativus L. (saffron) and their impact on crop performances and spice quality has been increasing in recent years. Instead, there is still little data on the biodiversity of soil microbial communities associated with this crop in the Alpine environments. The aims of this study were to investigate the fungal communities of two Alpine experimental sites cultivated with saffron, and to rank the relative impact of two AMF inocula, applied to soil as single species (R = Rhizophagus intraradices, C. Walker & A. Schüßler) or a mixture of two species (M = R. intraradices and Funneliformis mosseae, C. Walker & A. Schüßler), on the resident fungal communities which might be influenced in their diversity and composition. We used Illumina MiSeq metabarcoding on nuclear ribosomal ITS2 region to characterize the fungal communities associated to Crocus sativus cultivation in two fields, located in the municipalities of Saint Christophe (SC) and Morgex (MG), (Aosta Valley, Italy), treated or not with AMF inocula and sampled for two consecutive years (Y1; Y2). Data analyses consistently indicated that Basidiomycota were particularly abundant in both sites and sampling years (Y1 and Y2). Significant differences in the distribution of fungal taxa assemblages at phylum and class levels between the two sites were also found. The main compositional differences consisted in significant abundance changes of OTUs belonging to Dothideomycetes and Leotiomycetes (Ascomycota), Agaricomycetes and Tremellomycetes (Basidiomycota), Mortierellomycetes and Mucoromycetes. Further differences concerned OTUs, of other classes, significantly represented only in the first or second year of sampling. Concerning Glomeromycota, the most represented genus was Claroideoglomus always detected in both sites and years. Other AMF genera such as Funneliformis, Septoglomus and Microdominikia, were retrieved only in MG site. Results highlighted that neither sites nor inoculation significantly impacted Alpine saffron-field fungal communities; instead, the year of sampling had the most appreciable influence on the resident communities.

8.
Microorganisms ; 8(9)2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32846974

ABSTRACT

(1) Aims: Assessing bacterial diversity and plant-growth-promoting functions in the rhizosphere of the native African trees Colophospermum mopane and Combretum apiculatum in three landscapes of the Limpopo National Park (Mozambique), subjected to two fire regimes. (2) Methods: Bacterial communities were identified through Illumina Miseq sequencing of the 16S rRNA gene amplicons, followed by culture dependent methods to isolate plant growth-promoting bacteria (PGPB). Plant growth-promoting traits of the cultivable bacterial fraction were further analyzed. To screen for the presence of nitrogen-fixing bacteria, the promiscuous tropical legume Vigna unguiculata was used as a trap host. The taxonomy of all purified isolates was genetically verified by 16S rRNA gene Sanger sequencing. (3) Results: Bacterial community results indicated that fire did not drive major changes in bacterial abundance. However, culture-dependent methods allowed the differentiation of bacterial communities between the sampled sites, which were particularly enriched in Proteobacteria with a wide range of plant-beneficial traits, such as plant protection, plant nutrition, and plant growth. Bradyrhizobium was the most frequent symbiotic bacteria trapped in cowpea nodules coexisting with other endophytic bacteria. (4) Conclusion: Although the global analysis did not show significant differences between landscapes or sites with different fire regimes, probably due to the fast recovery of bacterial communities, the isolation of PGPB suggests that the rhizosphere bacteria are driven by the plant species, soil type, and fire regime, and are potentially associated with a wide range of agricultural, environmental, and industrial applications. Thus, the rhizosphere of African savannah ecosystems seems to be an untapped source of bacterial species and strains that should be further exploited for bio-based solutions.

9.
FEMS Microbiol Ecol ; 96(9)2020 09 01.
Article in English | MEDLINE | ID: mdl-32720684

ABSTRACT

Microbial communities associated with plants are greatly influenced by water availability in soil. In flooded crops, such as rice, the impact of water management on microbial dynamics is not fully understood. Here, we present a comprehensive study of the rice microbiota investigated in an experimental field located in one of the most productive areas of northern Italy. The microbiota associated with paddy soil and root was investigated using 454 pyrosequencing of 16S, ITS and 18S rRNA gene amplicons under two different water managements, upland (non-flooded, aerobic) and lowland (traditional flooding, anaerobic), at three plant development stages. Results highlighted a major role of the soil water status in shaping microbial communities, while phenological stage had low impacts. Compositional shifts in prokaryotic and fungal communities upon water management consisted in significant abundance changes of Firmicutes, Methanobacteria, Chloroflexi, Sordariomycetes, Dothideomycetes and Glomeromycotina. A vicariance in plant beneficial microbes and between saprotrophs and pathotrophs was observed between lowland and upland. Moreover, through network analysis, we demonstrated different co-abundance dynamics between lowland and upland conditions with a major impact on microbial hubs (strongly interconnected microbes) that fully shifted to aerobic microbes in the absence of flooding.


Subject(s)
Microbiota , Oryza , Bacteria/genetics , Italy , Plant Roots , Rhizosphere , Soil , Soil Microbiology , Water , Water Supply
10.
FEMS Microbiol Lett ; 367(14)2020 07 01.
Article in English | MEDLINE | ID: mdl-32648900

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are a key soil functional group, with an important potential to increase crop productivity and sustainable agriculture including food security. However, there is clear evidence that land uses, crop rotations and soil features affect the AMF diversity and their community functioning in many agroecosystems. So far, the information related to AMF biodiversity in ecosystems like the Argentinean Puna, an arid high plateau where plants experience high abiotic stresses, is still scarce. In this work, we investigated morphological and molecular AMF diversity in soils of native corn, bean and native potato Andean crops, under a familiar land use, in Chaupi Rodeo (Jujuy, Argentina), without agrochemical supplements but with different histories of crop rotation. Our results showed that AMF morphological diversity was not only high and variable among the three different crop soils but also complemented by Illumina MiSeq data. The multivariate analyses highlighted that total fungal diversity is significantly affected by the preceding crop plants and the rotation histories, more than from the present crop species, while AMF communities are significantly affected by preceding crop only in combination with the effect of nitrogen and calcium soil concentration. This knowledge will give useful information on appropriate familiar farming.


Subject(s)
Biodiversity , Fungi/isolation & purification , Mycorrhizae/isolation & purification , Soil Microbiology , Argentina , Calcium/analysis , Calcium/metabolism , Crop Production , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Ecosystem , Fungi/classification , Fungi/genetics , Fungi/growth & development , Mycobiome , Mycorrhizae/classification , Mycorrhizae/genetics , Mycorrhizae/growth & development , Nitrogen/analysis , Nitrogen/metabolism , Soil/chemistry
11.
J Fungi (Basel) ; 6(2)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517230

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) colonize land plants in almost every ecosystem, even in extreme conditions, such as saline soils. In the present work, we report the mycorrhizal capacity of rhizosphere soils collected in the dry desert region of the Minqin Oasis, located in the northwest of China (Gansu province), which is characterized by several halophytes. Lycium spp. and Peganum nigellastrum were used as trap plants in a greenhouse experiment to identify autochthonous AMF associated with the halophytes' rhizospheres. Morphological observations showed the typical AMF structures inside roots. Twenty-six molecularly distinct AMF taxa were recovered from soil and root DNA. The taxonomical diversity mirrors the several AMF adapted to extreme environmental conditions, such as the saline soil of central China. Knowledge of the AMF associated with halophytes may contribute to select specific fungal isolates to set up agriculture strategies for protecting non-halophyte crop plants in saline soils.

12.
Methods Mol Biol ; 2146: 99-116, 2020.
Article in English | MEDLINE | ID: mdl-32415599

ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of most land plants. They have great ecological and economic impacts as they support plant nutrition and water supply, soil structure, and plant resistance to pathogens. Investigating AMF presence and distribution at small and large scales is critical. Therefore, research requires standard protocols to be easily implemented. In this chapter, we describe a workflow for AMF identification by high-throughput sequencing through Illumina MiSeq platform of two DNA target regions: small subunit (SSU) and internal transcribed spacer (ITS). The protocol can apply to both soil and root AMF communities.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Mycobiome/genetics , Mycorrhizae/genetics , Plant Roots/microbiology , Phylogeny , Plant Roots/genetics , Soil Microbiology
13.
Mol Ecol ; 27(18): 3671-3685, 2018 09.
Article in English | MEDLINE | ID: mdl-30146795

ABSTRACT

Biological diversities of multiple kingdoms potentially respond in similar ways to environmental changes. However, studies either compare details of microbial diversity across general vegetation or land use classes or relate details of plant community diversity with the extent of microbially governed soil processes, via physiological profiling. Here, we test the hypothesis of shared responses of plant and rhizosphere bacterial, fungal and metazoan biodiversities (especially across-habitat ß-diversity patterns) along a disturbance gradient encompassing grazed to abandoned Alpine pasture, on acid soil in the European Central Alps. Rhizosphere biological diversity was inferred from eDNA fractions specific to bacteria, fungi and metazoans from contrasting plant habitats indicative of different disturbance levels. We found that soil ß-diversity patterns were weakly correlated with plant diversity measures and similarly ordinated along an evident edaphic (pH, C:N, assimilable P) and disturbance gradient but, contrary to our hypothesis, did not demonstrate the same diversity patterns. While plant communities were well separated along the disturbance gradient, correlating with fungal diversity, the majority of bacterial taxa were shared between disturbance levels (75% of bacteria were ubiquitous, cf. 29% plant species). Metazoa exhibited an intermediate response, with communities at the lowest levels of disturbance partially overlapping. Thus, plant and soil biological diversities were only loosely dependent and did not exhibit strictly linked environmental responses. This probably reflects the different spatial scales of organisms (and their habitats) and capacity to invest resources in persistent multicellular tissues, suggesting that vegetation responses to environmental change are unreliable indicators of below-ground biodiversity responses.


Subject(s)
Bacteria/classification , Biodiversity , Ecosystem , Fungi/classification , Plants/classification , Computational Biology , Italy , Rhizosphere , Soil Microbiology
14.
Ecol Evol ; 8(15): 7401-7420, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30151159

ABSTRACT

In this article, we report and discuss the results obtained from a survey of plants, microorganisms (bacteria and fungi), and soil elements along a chronosequence in the first 600 m of the Maliy Aktru glacier's forefront (Altai Mountains, Russia). Many glaciers of the world show effects of climate change. Nonetheless, except for some local reports, the ecological effects of deglaciation have been poorly studied and have not been quantitatively assessed in the Altai Mountains. Here, we studied the ecological changes of plants, fungi, bacteria, and soil elements that take the form of a primary ecological succession and that took place over the deglaciated soil of the Maliy Aktru glacier during the last 50 year. According to our measurements, the glacier lost about 12 m per year during the last 50 years. Plant succession shows clear signs of changes along the incremental distance from the glacier forefront. The analysis of the plant α- and ß-diversity confirmed an expected increase of them with increasing distance from the glacier forefront. Moreover, the analysis of ß-diversity confirmed the hypothesis of the presence of three main stages of the plant succession: (a) initial (pioneer species) from 30 to 100 m; (b) intermediate (r-selected species) from 110 to 120-150 m; and (c) final (K-selected species) from 150 to 550. Our study also shows that saprotrophic communities of fungi are widely distributed in the glacier retreating area with higher relative abundances of saprotroph ascomycetes at early successional stages. The evolution of a primary succession is also evident for bacteria, soil elements, and CO 2 emission and respiration. The development of biological communities and the variation in geochemical parameters represent an irrefutable proof that climate change is altering soils that have been long covered by ice.

15.
Nat Commun ; 9(1): 3033, 2018 08 02.
Article in English | MEDLINE | ID: mdl-30072764

ABSTRACT

Soil microbial communities play a crucial role in ecosystem functioning, but it is unknown how co-occurrence networks within these communities respond to disturbances such as climate extremes. This represents an important knowledge gap because changes in microbial networks could have implications for their functioning and vulnerability to future disturbances. Here, we show in grassland mesocosms that drought promotes destabilising properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in bacterial communities link more strongly to soil functioning during recovery than do changes in fungal communities. Moreover, we reveal that drought has a prolonged effect on bacterial communities and their co-occurrence networks via changes in vegetation composition and resultant reductions in soil moisture. Our results provide new insight in the mechanisms through which drought alters soil microbial communities with potential long-term consequences, including future plant community composition and the ability of aboveground and belowground communities to withstand future disturbances.


Subject(s)
Bacteria/metabolism , Droughts , Fungi/metabolism , Soil Microbiology , Biomass , Ecosystem , Models, Biological , Plants/microbiology , Soil
16.
Mycorrhiza ; 28(5-6): 535-548, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29931405

ABSTRACT

Intensive farming practices that implement deep and frequent tillage, high input inorganic fertilization, cultivation with non-host species, and pesticide use are widely reported to be detrimental for arbuscular mycorrhizal fungi (AMF), which are one of the most important plant biofertilizers. The effect of the reduction of agricultural input on AMF community dynamics following conversion from conventional non-mycorrhizal to lower input mycorrhizal crop cultivation has not yet been fully elucidated. We investigated the effect of the reduction of agricultural input, rotation, and season on AMF communities in winter wheat field soil after conversion from long-term (more than 20 years) non-mycorrhizal (sugar beet) crop cultivation. We described AMF communities from bulk soil samples by specifically targeting the 18S ribosomal gene using a combination of AMF specific primers and 454 pyrosequencing. No effect was found after 3 years' reduction of agricultural input, and only marginal effects were due to rotation with specific crops preceding winter wheat. Instead, season and year of sampling had the most appreciable influence on the AMF community. We suggest that, after conversion from long-term non-mycorrhizal to mycorrhizal crop cultivation, AMF diversity is low if compared to similar agroecosystems. Seasonal and successional dynamics play an important role as determinants of community structure.


Subject(s)
Microbial Consortia , Mycorrhizae/classification , Seasons , Soil Microbiology , Triticum/microbiology , Agriculture/methods , Crops, Agricultural , Farms , High-Throughput Nucleotide Sequencing , Plant Roots/microbiology , RNA, Ribosomal, 18S/genetics
17.
Planta ; 247(3): 573-585, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29124326

ABSTRACT

MAIN CONCLUSION: AM symbiosis did not strongly affect Arundo donax performances under salt stress, although differences in the plants inoculated with two different fungi were recorded. The mechanisms at the basis of the improved tolerance to abiotic stresses by arbuscular mycorrhizal (AM) fungi have been investigated mainly focusing on food crops. In this work, the potential impact of AM symbiosis on the performance of a bioenergy crop, Arundo donax, under saline conditions was considered. Specifically, we tried to understand whether AM symbiosis helps this fast-growing plant, often widespread in marginal soils, withstand salt. A combined approach, involving eco-physiological, morphometric and biochemical measurements, was used and the effects of two different AM fungal species (Funneliformis mosseae and Rhizophagus irregularis) were compared. Results indicate that potted A. donax plants do not suffer permanent damage induced by salt stress, but photosynthesis and growth are considerably reduced. Since A. donax is a high-yield biomass crop, reduction of biomass might be a serious agronomical problem in saline conditions. At least under the presently experienced growth conditions, and plant-AM combinations, the negative effect of salt on plant performance was not rescued by AM fungal colonization. However, some changes in plant metabolisms were observed following AM-inoculation, including a significant increase in proline accumulation and a trend toward higher isoprene emission and higher H2O2, especially in plants colonized by R. irregularis. This suggests that AM fungal symbiosis influences plant metabolism, and plant-AM fungus combination is an important factor for improving plant performance and productivity, in presence or absence of stress conditions.


Subject(s)
Mycorrhizae/physiology , Poaceae/physiology , Stress, Physiological , Biomass , Chlorophyll/physiology , Plant Leaves/chemistry , Plant Leaves/physiology , Plant Roots/microbiology , Plant Transpiration/physiology , Poaceae/microbiology , Salinity , Soil , Water/analysis
18.
PLoS One ; 12(2): e0171866, 2017.
Article in English | MEDLINE | ID: mdl-28192471

ABSTRACT

Berardia subacaulis Vill. is a monospecific genus that is endemic to the South-western Alps, where it grows on alpine screes, which are extreme habitats characterized by soil disturbance and limiting growth conditions. Root colonization by arbuscular mycorrhizal fungi (AMF) is presumably of great importance in these environments, because of its positive effect on plant nutrition and stress tolerance, as well as on structuring the soil. However, there is currently a lack of information on this topic. In this paper, we tested which soil characteristics and biotic factors could contribute to determining the abundance and community composition of AMF in the roots of B. subacaulis, which had previously been found to be mycorrhizal. For such a reason, the influence of soil properties and environmental factors on AMF abundance and community composition in the roots of B. subacaulis, sampled on three different scree slopes, were analysed through microscopic and molecular analysis. The results have shown that the AMF community of Berardia roots was dominated by Glomeraceae, and included a core of AMF taxa, common to all three scree slopes. The vegetation coverage and dark septate endophytes were not related to the AMF colonization percentage and plant community did not influence the root AMF composition. The abundance of AMF in the roots was related to some chemical (available extractable calcium and potassium) and physical (cation exchange capacity, electrical conductivity and field capacity) properties of the soil, thus suggesting an effect of AMF on improving the soil quality. The non-metric multidimensional scaling (NMDS) ordination of the AMF community composition showed that the diversity of AMF in the various sites was influenced not only by the soil quality, but also by the slope. Therefore, the slope-induced physical disturbance of alpine screes may contribute to the selection of disturbance-tolerant AMF taxa, which in turn may lead to different plant-fungus assemblages.


Subject(s)
Asteraceae/microbiology , Ecosystem , Mycorrhizae/physiology , Soil/chemistry , Altitude , Endophytes/physiology , France , Genetic Variation , Geography , Italy , Mycorrhizae/classification , Mycorrhizae/genetics , Phylogeny , Plant Roots/microbiology , Population Density , Population Dynamics , Soil Microbiology
19.
Plant Physiol ; 171(2): 1009-23, 2016 06.
Article in English | MEDLINE | ID: mdl-27208301

ABSTRACT

Arbuscular mycorrhizal (AM) fungi, which form symbioses with the roots of the most important crop species, are usually considered biofertilizers, whose exploitation could represent a promising avenue for the development in the future of a more sustainable next-generation agriculture. The best understood function in symbiosis is an improvement in plant mineral nutrient acquisition, as exchange for carbon compounds derived from the photosynthetic process: this can enhance host growth and tolerance to environmental stresses, such as water stress (WS). However, physiological and molecular mechanisms occurring in arbuscular mycorrhiza-colonized plants and directly involved in the mitigation of WS effects need to be further investigated. The main goal of this work is to verify the potential impact of AM symbiosis on the plant response to WS To this aim, the effect of two AM fungi (Funneliformis mosseae and Rhizophagus intraradices) on tomato (Solanum lycopersicum) under the WS condition was studied. A combined approach, involving ecophysiological, morphometric, biochemical, and molecular analyses, has been used to highlight the mechanisms involved in plant response to WS during AM symbiosis. Gene expression analyses focused on a set of target genes putatively involved in the plant response to drought, and in parallel, we considered the expression changes induced by the imposed stress on a group of fungal genes playing a key role in the water-transport process. Taken together, the results show that AM symbiosis positively affects the tolerance to WS in tomato, with a different plant response depending on the AM fungi species involved.


Subject(s)
Glomeromycota/physiology , Mycorrhizae/physiology , Solanum lycopersicum/microbiology , Symbiosis , Water/physiology , Dehydration , Solanum lycopersicum/physiology , Plant Roots/microbiology , Plant Roots/physiology , Stress, Physiological
20.
Fungal Biol ; 119(6): 518-27, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25986549

ABSTRACT

The development of the fruiting body (truffle) of the ectomycorrhizal fungus Tuber melanosporum is associated with the production of an area (commonly referred to with the French word brûlé) around its symbiotic plant that has scanty vegetation. As truffles produce metabolites that can mediate fungal-plant interactions, the authors wondered whether the brûlé could affect the arbuscular mycorrhizal fungi (AMF) that colonize the patchy herbaceous plants inside the brûlé. A morphological evaluation of the roots of plants collected in 2009 from a T. melanosporum/Quercus pubescens brûlé in France has shown that the herbaceous plants are colonized by AMF to a great extent. An analysis of the 18S rRNA sequences obtained from roots and soil inside the brûlé has shown that the AMF community structure seemed to be affected in the soil inside the brûlé, where less richness was observed compared to outside the brûlé.


Subject(s)
Ascomycota/growth & development , Biodiversity , Mycorrhizae/classification , Plant Roots/microbiology , Quercus/microbiology , Soil Microbiology , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , France , Molecular Sequence Data , Mycorrhizae/genetics , Mycorrhizae/isolation & purification , Phylogeny , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...