Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Article in English | MEDLINE | ID: mdl-37848036

ABSTRACT

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Subject(s)
Post-Acute COVID-19 Syndrome , Serotonin , Humans , COVID-19/complications , Disease Progression , Inflammation , Post-Acute COVID-19 Syndrome/blood , Post-Acute COVID-19 Syndrome/pathology , Serotonin/blood , Virus Diseases
2.
Nat Metab ; 5(10): 1691-1705, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37783943

ABSTRACT

Sustained responses to transient environmental stimuli are important for survival. The mechanisms underlying long-term adaptations to temporary shifts in abiotic factors remain incompletely understood. Here, we find that transient cold exposure leads to sustained transcriptional and metabolic adaptations in brown adipose tissue, which improve thermogenic responses to secondary cold encounter. Primary thermogenic challenge triggers the delayed induction of a lipid biosynthesis programme even after cessation of the original stimulus, which protects from subsequent exposures. Single-nucleus RNA sequencing and spatial transcriptomics reveal that this response is driven by a lipogenic subpopulation of brown adipocytes localized along the perimeter of Ucp1hi adipocytes. This lipogenic programme is associated with the production of acylcarnitines, and supplementation of acylcarnitines is sufficient to recapitulate improved secondary cold responses. Overall, our data highlight the importance of heterogenous brown adipocyte populations for 'thermogenic memory', which may have therapeutic implications for leveraging short-term thermogenesis to counteract obesity.


Subject(s)
Adipocytes, Brown , Adipose Tissue, Brown , Adipocytes, Brown/metabolism , Adipose Tissue, Brown/metabolism , Thermogenesis/physiology
3.
Cell ; 186(13): 2823-2838.e20, 2023 06 22.
Article in English | MEDLINE | ID: mdl-37236193

ABSTRACT

Mental health profoundly impacts inflammatory responses in the body. This is particularly apparent in inflammatory bowel disease (IBD), in which psychological stress is associated with exacerbated disease flares. Here, we discover a critical role for the enteric nervous system (ENS) in mediating the aggravating effect of chronic stress on intestinal inflammation. We find that chronically elevated levels of glucocorticoids drive the generation of an inflammatory subset of enteric glia that promotes monocyte- and TNF-mediated inflammation via CSF1. Additionally, glucocorticoids cause transcriptional immaturity in enteric neurons, acetylcholine deficiency, and dysmotility via TGF-ß2. We verify the connection between the psychological state, intestinal inflammation, and dysmotility in three cohorts of IBD patients. Together, these findings offer a mechanistic explanation for the impact of the brain on peripheral inflammation, define the ENS as a relay between psychological stress and gut inflammation, and suggest that stress management could serve as a valuable component of IBD care.


Subject(s)
Enteric Nervous System , Inflammatory Bowel Diseases , Humans , Glucocorticoids/pharmacology , Inflammation , Enteric Nervous System/physiology , Stress, Psychological
4.
Nat Immunol ; 24(1): 42-54, 2023 01.
Article in English | MEDLINE | ID: mdl-36050414

ABSTRACT

Innate lymphoid cells (ILCs) are well-characterized immune cells that play key roles in host defense and tissue homeostasis. Yet, how the three-dimensional (3D) genome organization underlies the development and functions of ILCs is unknown. Herein, we carried out an integrative analysis of the 3D genome structure, chromatin accessibility and gene expression in mature ILCs. Our results revealed that the local 3D configuration of the genome is rewired specifically at loci associated with ILC biology to promote their development and functional differentiation. Importantly, we demonstrated that the ontogenesis of ILC2s and the progression of allergic airway inflammation are determined by a unique local 3D configuration of the region containing the ILC-lineage-defining factor Id2, which is characterized by multiple interactions between the Id2 promoter and distal regulatory elements bound by the transcription factors GATA-3 and RORα, unveiling the mechanism whereby the Id2 expression is specifically controlled in group 2 ILCs.


Subject(s)
Immunity, Innate , Lymphocytes , Humans , Inflammation/genetics , Inflammation/metabolism , Cell Lineage , Promoter Regions, Genetic
5.
Nature ; 612(7941): 739-747, 2022 12.
Article in English | MEDLINE | ID: mdl-36517598

ABSTRACT

Exercise exerts a wide range of beneficial effects for healthy physiology1. However, the mechanisms regulating an individual's motivation to engage in physical activity remain incompletely understood. An important factor stimulating the engagement in both competitive and recreational exercise is the motivating pleasure derived from prolonged physical activity, which is triggered by exercise-induced neurochemical changes in the brain. Here, we report on the discovery of a gut-brain connection in mice that enhances exercise performance by augmenting dopamine signalling during physical activity. We find that microbiome-dependent production of endocannabinoid metabolites in the gut stimulates the activity of TRPV1-expressing sensory neurons and thereby elevates dopamine levels in the ventral striatum during exercise. Stimulation of this pathway improves running performance, whereas microbiome depletion, peripheral endocannabinoid receptor inhibition, ablation of spinal afferent neurons or dopamine blockade abrogate exercise capacity. These findings indicate that the rewarding properties of exercise are influenced by gut-derived interoceptive circuits and provide a microbiome-dependent explanation for interindividual variability in exercise performance. Our study also suggests that interoceptomimetic molecules that stimulate the transmission of gut-derived signals to the brain may enhance the motivation for exercise.


Subject(s)
Brain-Gut Axis , Dopamine , Exercise , Gastrointestinal Microbiome , Motivation , Running , Animals , Mice , Brain/cytology , Brain/metabolism , Dopamine/metabolism , Endocannabinoids/antagonists & inhibitors , Endocannabinoids/metabolism , Sensory Receptor Cells/metabolism , Brain-Gut Axis/physiology , Gastrointestinal Microbiome/physiology , Exercise/physiology , Exercise/psychology , Physical Conditioning, Animal/physiology , Physical Conditioning, Animal/psychology , Models, Animal , Humans , Ventral Striatum/cytology , Ventral Striatum/metabolism , Running/physiology , Running/psychology , Reward , Individuality
6.
Genome Med ; 14(1): 80, 2022 07 29.
Article in English | MEDLINE | ID: mdl-35906678

ABSTRACT

The interaction between the metabolic activities of the intestinal microbiome and its host forms an important part of health. The basis of this interaction is in part mediated by the release of microbially-derived metabolites that enter the circulation. These products of microbial metabolism thereby interface with the immune, metabolic, or nervous systems of the host to influence physiology. Here, we review the interactions between the metabolic activities of the microbiome and the systemic metabolism of the host. The concept that the endocrine system includes more than just the eukaryotic host component enables the rational design of exogenous interventions that shape human metabolism. An improved mechanistic understanding of the metabolic microbiome-host interaction may therefore pioneer actionable microbiota-based diagnostics or therapeutics that allow the control of host systemic metabolism via the microbiome.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Gastrointestinal Microbiome/physiology , Humans
7.
Elife ; 112022 05 09.
Article in English | MEDLINE | ID: mdl-35532013

ABSTRACT

The COVID-19 pandemic has created an urgent need for rapid, effective, and low-cost SARS-CoV-2 diagnostic testing. Here, we describe COV-ID, an approach that combines RT-LAMP with deep sequencing to detect SARS-CoV-2 in unprocessed human saliva with a low limit of detection (5-10 virions). Based on a multi-dimensional barcoding strategy, COV-ID can be used to test thousands of samples overnight in a single sequencing run with limited labor and laboratory equipment. The sequencing-based readout allows COV-ID to detect multiple amplicons simultaneously, including key controls such as host transcripts and artificial spike-ins, as well as multiple pathogens. Here, we demonstrate this flexibility by simultaneous detection of 4 amplicons in contrived saliva samples: SARS-CoV-2, influenza A, human STATHERIN, and an artificial SARS calibration standard. The approach was validated on clinical saliva samples, where it showed excellent agreement with RT-qPCR. COV-ID can also be performed directly on saliva absorbed on filter paper, simplifying collection logistics and sample handling.


Subject(s)
COVID-19 , Orthomyxoviridae , COVID-19/diagnosis , Humans , Pandemics , RNA, Viral/analysis , SARS-CoV-2/genetics , Saliva , Sensitivity and Specificity
8.
Nature ; 605(7908): 160-165, 2022 05.
Article in English | MEDLINE | ID: mdl-35477756

ABSTRACT

Colorectal cancer (CRC) is among the most frequent forms of cancer, and new strategies for its prevention and therapy are urgently needed1. Here we identify a metabolite signalling pathway that provides actionable insights towards this goal. We perform a dietary screen in autochthonous animal models of CRC and find that ketogenic diets exhibit a strong tumour-inhibitory effect. These properties of ketogenic diets are recapitulated by the ketone body ß-hydroxybutyrate (BHB), which reduces the proliferation of colonic crypt cells and potently suppresses intestinal tumour growth. We find that BHB acts through the surface receptor Hcar2 and induces the transcriptional regulator Hopx, thereby altering gene expression and inhibiting cell proliferation. Cancer organoid assays and single-cell RNA sequencing of biopsies from patients with CRC provide evidence that elevated BHB levels and active HOPX are associated with reduced intestinal epithelial proliferation in humans. This study thus identifies a BHB-triggered pathway regulating intestinal tumorigenesis and indicates that oral or systemic interventions with a single metabolite may complement current prevention and treatment strategies for CRC.


Subject(s)
Colorectal Neoplasms , Signal Transduction , 3-Hydroxybutyric Acid/metabolism , 3-Hydroxybutyric Acid/pharmacology , Animals , Cell Proliferation , Cell Transformation, Neoplastic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Humans
9.
Cell Metab ; 33(8): 1516-1518, 2021 08 03.
Article in English | MEDLINE | ID: mdl-34348098

ABSTRACT

Antibiotic tolerance enables microorganisms to survive the exposure to antibiotics and serves as a precursor to antibiotic resistance. In a recent issue of Nature Microbiology, Liu et al. (2021) describe that high-fat-diet-induced changes in the intestinal microbiome and metabolome facilitate the development of antibiotic tolerance by bacterial pathogens.


Subject(s)
Anti-Bacterial Agents , Gastrointestinal Microbiome , Anti-Bacterial Agents/pharmacology , Bacteria , Diet
10.
Am J Physiol Gastrointest Liver Physiol ; 318(4): G717-G724, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32068441

ABSTRACT

The intestinal commensal microbiome is an important component of host health, in part by contributing an abundance of metabolites that gain access to the systemic circulation. The microbiome thereby influences the physiology of numerous organ systems outside the gastrointestinal tract. The consequences of this signaling axis between the intestinal microbiome and host are profound, in particular for the modulation of organismal metabolism. Here, we review recent examples whereby the intestinal microbiome influences host metabolism by influencing the biology of adipose tissue. We place a special emphasis on metabolite-driven pathways by which adipose tissue responds to alterations in intestinal microbial colonization. Given its accessibility for therapeutic interventions, the gut microbiome is an attractive relay module for the remote control of systemic metabolism.


Subject(s)
Adipose Tissue/physiology , Gastrointestinal Microbiome/physiology , Energy Metabolism/physiology , Humans
11.
Cell ; 178(3): 686-698.e14, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31257031

ABSTRACT

Immune cells residing in white adipose tissue have been highlighted as important factors contributing to the pathogenesis of metabolic diseases, but the molecular regulators that drive adipose tissue immune cell remodeling during obesity remain largely unknown. Using index and transcriptional single-cell sorting, we comprehensively map all adipose tissue immune populations in both mice and humans during obesity. We describe a novel and conserved Trem2+ lipid-associated macrophage (LAM) subset and identify markers, spatial localization, origin, and functional pathways associated with these cells. Genetic ablation of Trem2 in mice globally inhibits the downstream molecular LAM program, leading to adipocyte hypertrophy as well as systemic hypercholesterolemia, body fat accumulation, and glucose intolerance. These findings identify Trem2 signaling as a major pathway by which macrophages respond to loss of tissue-level lipid homeostasis, highlighting Trem2 as a key sensor of metabolic pathologies across multiple tissues and a potential therapeutic target in metabolic diseases.


Subject(s)
Macrophages/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , Adipose Tissue, White/metabolism , Adipose Tissue, White/pathology , Animals , Diet, High-Fat , Glucose Intolerance , Humans , Intra-Abdominal Fat/metabolism , Intra-Abdominal Fat/pathology , Lipid Metabolism/genetics , Lipids/analysis , Macrophages/cytology , Membrane Glycoproteins/deficiency , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/cytology , Monocytes/metabolism , Obesity/metabolism , Obesity/pathology , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Signal Transduction , Single-Cell Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...