Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hosp Infect ; 142: 105-114, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806452

ABSTRACT

BACKGROUND: Nosocomial outbreaks of Candida auris, a multidrug-resistant fungus, are increasingly reported worldwide; the mode of transmission has usually been reported to be via direct contact. Some studies previously suggested potential short-distance air dispersal during high-turbulence activities, but evidence on long-range air dispersal remains scarce. AIM: To describe a C. auris nosocomial outbreak involving two wards (H7, 5E) in two local hospitals. METHODS: Samples were taken from patients, ward surfaces (frequently touched items and non-reachable surfaces) while settle plates were used for passive air sampling to investigate possible contributions by direct contact and air dispersal. Epidemiological and phylogenetic analyses were also performed on the C. auris isolates from this outbreak. FINDINGS: Eighteen patients were confirmed to have asymptomatic C. auris skin colonization. C. auris was expectedly identified in samplings from frequently touched ward items but was also isolated in two samples from ceiling supply air grilles which were 2.4 m high and inaccessible by patients. Moreover, one sample from a corridor return air grille as far as 9.8 m away from the C. auris cohort area was also positive. Two passive air samplings were positive, including one from a cubicle with no confirmed cases for four days, suggesting possible air dispersal of C. auris. Whole-genome sequencing confirmed clonality of air, environment, and patients' isolates. CONCLUSION: This is the first study to demonstrate potential long-range air dispersal of C. auris in an open-cubicle ward setting. Ventilation precautions and decontamination of out-of-reach high-level surfaces should be considered in C. auris outbreak management.


Subject(s)
Candidiasis , Cross Infection , Humans , Candida , Candidiasis/epidemiology , Candida auris , Phylogeny , Hong Kong/epidemiology , Disease Outbreaks , Microbial Sensitivity Tests , Cross Infection/epidemiology , Antifungal Agents
2.
J Hosp Infect ; 123: 52-60, 2022 May.
Article in English | MEDLINE | ID: mdl-35196559

ABSTRACT

BACKGROUND: Meticillin-resistant Staphylococcus aureus (MRSA) infections are rampant in hospitals and residential care homes for the elderly (RCHEs). AIM: To analyse the prevalence of MRSA colonization among residents and staff, and degree of environmental contamination and air dispersal of MRSA in RCHEs. METHODS: Epidemiological and genetic analysis by whole-genome sequencing (WGS) in 12 RCHEs in Hong Kong. FINDINGS: During the COVID-19 pandemic (from September to October 2021), 48.7% (380/781) of RCHE residents were found to harbour MRSA at any body site, and 8.5% (8/213) of staff were nasal MRSA carriers. Among 239 environmental samples, MRSA was found in 39.0% (16/41) of randomly selected resident rooms and 31.3% (62/198) of common areas. The common areas accessible by residents had significantly higher MRSA contamination rates than those that were not accessible by residents (37.2%, 46/121 vs. 22.1%, 17/177, P=0.028). Of 124 air samples, nine (7.3%) were MRSA-positive from four RCHEs. Air dispersal of MRSA was significantly associated with operating indoor fans in RCHEs (100%, 4/4 vs. 0%, 0/8, P=0.002). WGS of MRSA isolates collected from residents, staff and environmental and air samples showed that ST 1047 (CC1) lineage 1 constituted 43.1% (66/153) of all MRSA isolates. A distinctive predominant genetic lineage of MRSA in each RCHE was observed, suggestive of intra-RCHE transmission rather than clonal acquisition from the catchment hospital. CONCLUSION: MRSA control in RCHEs is no less important than in hospitals. Air dispersal of MRSA may be an important mechanism of dissemination in RCHEs with operating indoor fans.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Aged , COVID-19/epidemiology , Carrier State/epidemiology , Humans , Methicillin , Methicillin-Resistant Staphylococcus aureus/genetics , Pandemics , Staphylococcal Infections/epidemiology
6.
J Hosp Infect ; 105(2): 119-127, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32259546

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) was first reported in Wuhan in December 2019 and has rapidly spread across different cities within and outside China. Hong Kong started to prepare for COVID-19 on 31st December 2019 and infection control measures in public hospitals were tightened to limit nosocomial transmission within healthcare facilities. However, the recommendations on the transmission-based precautions required for COVID-19 in hospital settings vary from droplet and contact precautions, to contact and airborne precautions with placement of patients in airborne infection isolation rooms. AIM: To describe an outbreak investigation of a patient with COVID-19 who was nursed in an open cubicle of a general ward before the diagnosis was made. METHOD: Contacts were identified and risk categorized as 'close' or 'casual' for decisions on quarantine and/or medical surveillance. Respiratory specimens were collected from contacts who developed fever, and/or respiratory symptoms during the surveillance period and were tested for SARS-CoV-2. FINDINGS: A total of 71 staff and 49 patients were identified from contact tracing, seven staff and 10 patients fulfilled the criteria of 'close contact'. At the end of 28-day surveillance, 76 tests were performed on 52 contacts and all were negative, including all patient close contacts and six of the seven staff close contacts. The remaining contacts were asymptomatic throughout the surveillance period. CONCLUSION: Our findings suggest that SARS-CoV-2 is not spread by an airborne route, and nosocomial transmissions can be prevented through vigilant basic infection control measures, including wearing of surgical masks, hand and environmental hygiene.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/transmission , Cross Infection/prevention & control , Disease Transmission, Infectious/prevention & control , Infection Control/methods , Infection Control/organization & administration , Pneumonia, Viral/transmission , COVID-19 , Contact Tracing , Coronavirus Infections/epidemiology , Female , Hong Kong/epidemiology , Hospitals , Humans , Middle Aged , Pandemics , Patients' Rooms , Pneumonia, Viral/epidemiology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...