Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850591

ABSTRACT

Remote robotic systems are employed in the CERN accelerator complex to perform different tasks, such as the safe handling of cables and their connectors. Without dedicated control, these kinds of actions are difficult and require the operators' intervention, which is subjected to dangerous external agents. In this paper, two novel modules of the CERNTAURO framework are presented to provide a safe and usable solution for managing optical fibres and their connectors. The first module is used to detect touch and slippage, while the second one is used to regulate the grasping force and contrast slippage. The force reference was obtained with a combination of object recognition and a look-up table method. The proposed strategy was validated with tests in the CERN laboratory, and the preliminary experimental results demonstrated statistically significant increases in time-based efficiency and in the overall relative efficiency of the tasks.

2.
Front Med (Lausanne) ; 8: 693682, 2021.
Article in English | MEDLINE | ID: mdl-34336898

ABSTRACT

The CERN-MEDICIS (MEDical Isotopes Collected from ISolde) facility has delivered its first radioactive ion beam at CERN (Switzerland) in December 2017 to support the research and development in nuclear medicine using non-conventional radionuclides. Since then, fourteen institutes, including CERN, have joined the collaboration to drive the scientific program of this unique installation and evaluate the needs of the community to improve the research in imaging, diagnostics, radiation therapy and personalized medicine. The facility has been built as an extension of the ISOLDE (Isotope Separator On Line DEvice) facility at CERN. Handling of open radioisotope sources is made possible thanks to its Radiological Controlled Area and laboratory. Targets are being irradiated by the 1.4 GeV proton beam delivered by the CERN Proton Synchrotron Booster (PSB) on a station placed between the High Resolution Separator (HRS) ISOLDE target station and its beam dump. Irradiated target materials are also received from external institutes to undergo mass separation at CERN-MEDICIS. All targets are handled via a remote handling system and exploited on a dedicated isotope separator beamline. To allow for the release and collection of a specific radionuclide of medical interest, each target is heated to temperatures of up to 2,300°C. The created ions are extracted and accelerated to an energy up to 60 kV, and the beam steered through an off-line sector field magnet mass separator. This is followed by the extraction of the radionuclide of interest through mass separation and its subsequent implantation into a collection foil. In addition, the MELISSA (MEDICIS Laser Ion Source Setup At CERN) laser laboratory, in service since April 2019, helps to increase the separation efficiency and the selectivity. After collection, the implanted radionuclides are dispatched to the biomedical research centers, participating in the CERN-MEDICIS collaboration, for Research & Development in imaging or treatment. Since its commissioning, the CERN-MEDICIS facility has provided its partner institutes with non-conventional medical radionuclides such as Tb-149, Tb-152, Tb-155, Sm-153, Tm-165, Tm-167, Er-169, Yb-175, and Ac-225 with a high specific activity. This article provides a review of the achievements and milestones of CERN-MEDICIS since it has produced its first radioactive isotope in December 2017, with a special focus on its most recent operation in 2020.

3.
Sensors (Basel) ; 21(4)2021 Feb 17.
Article in English | MEDLINE | ID: mdl-33671253

ABSTRACT

Mechatronics and robotics appeared particularly effective in students' education, allowing them to create non-traditional solutions in STEM disciplines, which have a direct impact and interaction with the world surrounding them. This paper presents the current state of the MiniCERNBot Educational Robotic platform for high-school and university students. The robot provides a comprehensive educative system with tutorials and tasks tuned for different ages on 3D design, mechanical assembly, control, programming, planning, and operation. The system is inspired to existing robotic systems and typical robotic interventions performed at CERN, and includes an education mock-up that follows the example of a previous real operation performed in CERN's Antimatter Factory. The paper describes the learning paths where the MiniCERNBot platform can be used by students, at different ages and disciplines. In addition, it describes the software and hardware architecture, presenting results on modularity and network performance during education exercises. In summary, the objective of the study is improving the way STEM educational and dissemination activities at CERN Robotics Lab are performed, as well as their possible synergies with other education institutions, such as High-Schools and Universities, improving the learning collaborative process and inspiring students interested in technical studies. To this end, a new educational robotic platform has been designed, inspired on real scientific operations, which allows the students practice multidisciplinary STEM skills in a collaborative problem-solving way, while increasing their motivation and comprehension of the research activities.

4.
Sensors (Basel) ; 19(14)2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31336628

ABSTRACT

Robotic interventions in hazardous scenarios need to pay special attention to safety, as in most cases it is necessary to have an expert operator in the loop. Moreover, the use of a multi-modal Human-Robot Interface allows the user to interact with the robot using manual control in critical steps, as well as semi-autonomous behaviours in more secure scenarios, by using, for example, object tracking and recognition techniques. This paper describes a novel vision system to track and estimate the depth of metallic targets for robotic interventions. The system has been designed for on-hand monocular cameras, focusing on solving lack of visibility and partial occlusions. This solution has been validated during real interventions at the Centre for Nuclear Research (CERN) accelerator facilities, achieving 95% success in autonomous mode and 100% in a supervised manner. The system increases the safety and efficiency of the robotic operations, reducing the cognitive fatigue of the operator during non-critical mission phases. The integration of such an assistance system is especially important when facing complex (or repetitive) tasks, in order to reduce the work load and accumulated stress of the operator, enhancing the performance and safety of the mission.

SELECTION OF CITATIONS
SEARCH DETAIL
...