Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
J Am Med Inform Assoc ; 31(6): 1441-1444, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38452298

ABSTRACT

OBJECTIVES: This article aims to examine how generative artificial intelligence (AI) can be adopted with the most value in health systems, in response to the Executive Order on AI. MATERIALS AND METHODS: We reviewed how technology has historically been deployed in healthcare, and evaluated recent examples of deployments of both traditional AI and generative AI (GenAI) with a lens on value. RESULTS: Traditional AI and GenAI are different technologies in terms of their capability and modes of current deployment, which have implications on value in health systems. DISCUSSION: Traditional AI when applied with a framework top-down can realize value in healthcare. GenAI in the short term when applied top-down has unclear value, but encouraging more bottom-up adoption has the potential to provide more benefit to health systems and patients. CONCLUSION: GenAI in healthcare can provide the most value for patients when health systems adapt culturally to grow with this new technology and its adoption patterns.


Subject(s)
Artificial Intelligence , Delivery of Health Care , Humans
2.
Eur Heart J ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38503537

ABSTRACT

BACKGROUND AND AIMS: Early identification of cardiac structural abnormalities indicative of heart failure is crucial to improving patient outcomes. Chest X-rays (CXRs) are routinely conducted on a broad population of patients, presenting an opportunity to build scalable screening tools for structural abnormalities indicative of Stage B or worse heart failure with deep learning methods. In this study, a model was developed to identify severe left ventricular hypertrophy (SLVH) and dilated left ventricle (DLV) using CXRs. METHODS: A total of 71 589 unique CXRs from 24 689 different patients completed within 1 year of echocardiograms were identified. Labels for SLVH, DLV, and a composite label indicating the presence of either were extracted from echocardiograms. A deep learning model was developed and evaluated using area under the receiver operating characteristic curve (AUROC). Performance was additionally validated on 8003 CXRs from an external site and compared against visual assessment by 15 board-certified radiologists. RESULTS: The model yielded an AUROC of 0.79 (0.76-0.81) for SLVH, 0.80 (0.77-0.84) for DLV, and 0.80 (0.78-0.83) for the composite label, with similar performance on an external data set. The model outperformed all 15 individual radiologists for predicting the composite label and achieved a sensitivity of 71% vs. 66% against the consensus vote across all radiologists at a fixed specificity of 73%. CONCLUSIONS: Deep learning analysis of CXRs can accurately detect the presence of certain structural abnormalities and may be useful in early identification of patients with LV hypertrophy and dilation. As a resource to promote further innovation, 71 589 CXRs with adjoining echocardiographic labels have been made publicly available.

3.
Radiol Artif Intell ; 6(3): e230227, 2024 May.
Article in English | MEDLINE | ID: mdl-38477659

ABSTRACT

The Radiological Society of North America (RSNA) has held artificial intelligence competitions to tackle real-world medical imaging problems at least annually since 2017. This article examines the challenges and processes involved in organizing these competitions, with a specific emphasis on the creation and curation of high-quality datasets. The collection of diverse and representative medical imaging data involves dealing with issues of patient privacy and data security. Furthermore, ensuring quality and consistency in data, which includes expert labeling and accounting for various patient and imaging characteristics, necessitates substantial planning and resources. Overcoming these obstacles requires meticulous project management and adherence to strict timelines. The article also highlights the potential of crowdsourced annotation to progress medical imaging research. Through the RSNA competitions, an effective global engagement has been realized, resulting in innovative solutions to complex medical imaging problems, thus potentially transforming health care by enhancing diagnostic accuracy and patient outcomes. Keywords: Use of AI in Education, Artificial Intelligence © RSNA, 2024.


Subject(s)
Artificial Intelligence , Radiology , Humans , Diagnostic Imaging/methods , Societies, Medical , North America
4.
J Am Coll Radiol ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38302045
6.
Cell Rep Med ; 4(10): 101207, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37769656

ABSTRACT

Clinical decision support tools can improve diagnostic performance or reduce variability, but they are also subject to post-deployment underperformance. Although using AI in an assistive setting offsets many concerns with autonomous AI in medicine, systems that present all predictions equivalently fail to protect against key AI safety concerns. We design a decision pipeline that supports the diagnostic model with an ecosystem of models, integrating disagreement prediction, clinical significance categorization, and prediction quality modeling to guide prediction presentation. We characterize disagreement using data from a deployed chest X-ray interpretation aid and compare clinician burden in this proposed pipeline to the diagnostic model in isolation. The average disagreement rate is 6.5%, and the expected burden reduction is 4.8%, even if 5% of disagreements on urgent findings receive a second read. We conclude that, in our production setting, we can adequately balance risk mitigation with clinician burden if disagreement false positives are reduced.


Subject(s)
Artificial Intelligence , Radiologists , Humans , Clinical Relevance , Medicine , Retrospective Studies
7.
Nat Commun ; 14(1): 4039, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37419921

ABSTRACT

Deep learning (DL) models can harness electronic health records (EHRs) to predict diseases and extract radiologic findings for diagnosis. With ambulatory chest radiographs (CXRs) frequently ordered, we investigated detecting type 2 diabetes (T2D) by combining radiographic and EHR data using a DL model. Our model, developed from 271,065 CXRs and 160,244 patients, was tested on a prospective dataset of 9,943 CXRs. Here we show the model effectively detected T2D with a ROC AUC of 0.84 and a 16% prevalence. The algorithm flagged 1,381 cases (14%) as suspicious for T2D. External validation at a distinct institution yielded a ROC AUC of 0.77, with 5% of patients subsequently diagnosed with T2D. Explainable AI techniques revealed correlations between specific adiposity measures and high predictivity, suggesting CXRs' potential for enhanced T2D screening.


Subject(s)
Deep Learning , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/diagnostic imaging , Radiography, Thoracic/methods , Prospective Studies , Radiography
9.
NPJ Digit Med ; 6(1): 74, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37100953

ABSTRACT

Advancements in deep learning and computer vision provide promising solutions for medical image analysis, potentially improving healthcare and patient outcomes. However, the prevailing paradigm of training deep learning models requires large quantities of labeled training data, which is both time-consuming and cost-prohibitive to curate for medical images. Self-supervised learning has the potential to make significant contributions to the development of robust medical imaging models through its ability to learn useful insights from copious medical datasets without labels. In this review, we provide consistent descriptions of different self-supervised learning strategies and compose a systematic review of papers published between 2012 and 2022 on PubMed, Scopus, and ArXiv that applied self-supervised learning to medical imaging classification. We screened a total of 412 relevant studies and included 79 papers for data extraction and analysis. With this comprehensive effort, we synthesize the collective knowledge of prior work and provide implementation guidelines for future researchers interested in applying self-supervised learning to their development of medical imaging classification models.

13.
NPJ Digit Med ; 5(1): 157, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36261469

ABSTRACT

Medical professionals are increasingly required to use digital technologies as part of care delivery and this may represent a risk for medical error and subsequent malpractice liability. For example, if there is a medical error, should the error be attributed to the clinician or the artificial intelligence-based clinical decision-making system? In this article, we identify and discuss digital health technology-specific risks for malpractice liability and offer practical advice for the mitigation of malpractice risk.

15.
Pediatr Radiol ; 52(11): 2094-2100, 2022 10.
Article in English | MEDLINE | ID: mdl-35996023

ABSTRACT

Artificial intelligence research in health care has undergone tremendous growth in the last several years thanks to the explosion of digital health care data and systems that can leverage large amounts of data to learn patterns that can be applied to clinical tasks. In addition, given broad acceleration in machine learning across industries like transportation, media and commerce, there has been a significant growth in demand for machine-learning practitioners such as engineers and data scientists, who have skill sets that can be applied to health care use cases but who simultaneously lack important health care domain expertise. The purpose of this paper is to discuss the requirements of building an artificial-intelligence research enterprise including the research team, technical software/hardware, and procurement and curation of health care data.


Subject(s)
Algorithms , Artificial Intelligence , Humans , Intelligence , Machine Learning , Software
16.
Radiology ; 305(3): 555-563, 2022 12.
Article in English | MEDLINE | ID: mdl-35916673

ABSTRACT

As the role of artificial intelligence (AI) in clinical practice evolves, governance structures oversee the implementation, maintenance, and monitoring of clinical AI algorithms to enhance quality, manage resources, and ensure patient safety. In this article, a framework is established for the infrastructure required for clinical AI implementation and presents a road map for governance. The road map answers four key questions: Who decides which tools to implement? What factors should be considered when assessing an application for implementation? How should applications be implemented in clinical practice? Finally, how should tools be monitored and maintained after clinical implementation? Among the many challenges for the implementation of AI in clinical practice, devising flexible governance structures that can quickly adapt to a changing environment will be essential to ensure quality patient care and practice improvement objectives.


Subject(s)
Artificial Intelligence , Radiology , Humans , Radiography , Algorithms , Quality of Health Care
17.
NPJ Digit Med ; 5(1): 71, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35676445

ABSTRACT

Prostate cancer is the most frequent cancer in men and a leading cause of cancer death. Determining a patient's optimal therapy is a challenge, where oncologists must select a therapy with the highest likelihood of success and the lowest likelihood of toxicity. International standards for prognostication rely on non-specific and semi-quantitative tools, commonly leading to over- and under-treatment. Tissue-based molecular biomarkers have attempted to address this, but most have limited validation in prospective randomized trials and expensive processing costs, posing substantial barriers to widespread adoption. There remains a significant need for accurate and scalable tools to support therapy personalization. Here we demonstrate prostate cancer therapy personalization by predicting long-term, clinically relevant outcomes using a multimodal deep learning architecture and train models using clinical data and digital histopathology from prostate biopsies. We train and validate models using five phase III randomized trials conducted across hundreds of clinical centers. Histopathological data was available for 5654 of 7764 randomized patients (71%) with a median follow-up of 11.4 years. Compared to the most common risk-stratification tool-risk groups developed by the National Cancer Center Network (NCCN)-our models have superior discriminatory performance across all endpoints, ranging from 9.2% to 14.6% relative improvement in a held-out validation set. This artificial intelligence-based tool improves prognostication over standard tools and allows oncologists to computationally predict the likeliest outcomes of specific patients to determine optimal treatment. Outfitted with digital scanners and internet access, any clinic could offer such capabilities, enabling global access to therapy personalization.

18.
Lancet Digit Health ; 4(6): e406-e414, 2022 06.
Article in English | MEDLINE | ID: mdl-35568690

ABSTRACT

BACKGROUND: Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to recognise a patient's racial identity from medical images. METHODS: Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical images, including the ability of these models to generalise to external environments and across multiple imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which AI models can recognise race. FINDINGS: In our study, we show that standard AI deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities, which was sustained under external validation conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0·91-0·99], CT chest imaging [0·87-0·96], and mammography [0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show that the ability of AI deep learning models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable will be challenging and demand further study. INTERPRETATION: The results from our study emphasise that the ability of AI deep learning models to predict self-reported race is itself not the issue of importance. However, our finding that AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for all model deployments in medical imaging. FUNDING: National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of National Institutes of Health, US National Science Foundation, National Library of Medicine of the National Institutes of Health, and Taiwan Ministry of Science and Technology.


Subject(s)
Deep Learning , Lung Neoplasms , Artificial Intelligence , Early Detection of Cancer , Humans , Retrospective Studies
19.
Sci Data ; 9(1): 152, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383186

ABSTRACT

Improving speed and image quality of Magnetic Resonance Imaging (MRI) using deep learning reconstruction is an active area of research. The fastMRI dataset contains large volumes of raw MRI data, which has enabled significant advances in this field. While the impact of the fastMRI dataset is unquestioned, the dataset currently lacks clinical expert pathology annotations, critical to addressing clinically relevant reconstruction frameworks and exploring important questions regarding rendering of specific pathology using such novel approaches. This work introduces fastMRI+, which consists of 16154 subspecialist expert bounding box annotations and 13 study-level labels for 22 different pathology categories on the fastMRI knee dataset, and 7570 subspecialist expert bounding box annotations and 643 study-level labels for 30 different pathology categories for the fastMRI brain dataset. The fastMRI+ dataset is open access and aims to support further research and advancement of medical imaging in MRI reconstruction and beyond.


Subject(s)
Brain , Image Processing, Computer-Assisted , Knee Joint , Brain/diagnostic imaging , Brain/pathology , Humans , Knee Joint/diagnostic imaging , Knee Joint/pathology , Magnetic Resonance Imaging
20.
Lancet Digit Health ; 4(5): e351-e358, 2022 05.
Article in English | MEDLINE | ID: mdl-35396184

ABSTRACT

BACKGROUND: Proximal femoral fractures are an important clinical and public health issue associated with substantial morbidity and early mortality. Artificial intelligence might offer improved diagnostic accuracy for these fractures, but typical approaches to testing of artificial intelligence models can underestimate the risks of artificial intelligence-based diagnostic systems. METHODS: We present a preclinical evaluation of a deep learning model intended to detect proximal femoral fractures in frontal x-ray films in emergency department patients, trained on films from the Royal Adelaide Hospital (Adelaide, SA, Australia). This evaluation included a reader study comparing the performance of the model against five radiologists (three musculoskeletal specialists and two general radiologists) on a dataset of 200 fracture cases and 200 non-fractures (also from the Royal Adelaide Hospital), an external validation study using a dataset obtained from Stanford University Medical Center, CA, USA, and an algorithmic audit to detect any unusual or unexpected model behaviour. FINDINGS: In the reader study, the area under the receiver operating characteristic curve (AUC) for the performance of the deep learning model was 0·994 (95% CI 0·988-0·999) compared with an AUC of 0·969 (0·960-0·978) for the five radiologists. This strong model performance was maintained on external validation, with an AUC of 0·980 (0·931-1·000). However, the preclinical evaluation identified barriers to safe deployment, including a substantial shift in the model operating point on external validation and an increased error rate on cases with abnormal bones (eg, Paget's disease). INTERPRETATION: The model outperformed the radiologists tested and maintained performance on external validation, but showed several unexpected limitations during further testing. Thorough preclinical evaluation of artificial intelligence models, including algorithmic auditing, can reveal unexpected and potentially harmful behaviour even in high-performance artificial intelligence systems, which can inform future clinical testing and deployment decisions. FUNDING: None.


Subject(s)
Deep Learning , Femoral Fractures , Artificial Intelligence , Emergency Service, Hospital , Femoral Fractures/diagnostic imaging , Humans , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...