Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Justice ; 64(3): 258-263, 2024 May.
Article in English | MEDLINE | ID: mdl-38735660

ABSTRACT

In forensic paint examination, paint traces retrieved on a crime scene are regularly compared to painted objects seized from a suspect. Less often, traces are only observed on the seized objects and compared to a damaged painted object on the crime scene. In some specific cases, paint traces may be found both on the crime scene and on one or multiple seized painted objects. The latter may be the result of a cross-transfer that occurred during the illicit act. However, mere coincidence is another possible explanation for these observations and may not be neglected. Proper consideration of the relevant populations and sufficient analytical data permits the evaluation of the results given activity level propositions. This allows the forensic expert to present a transparent and well-balanced statement on the value of their findings concerning the disputed issues in court.

2.
Forensic Sci Int ; 354: 111890, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101176

ABSTRACT

In cases where the suspected cause of death is smothering, fibre traces recovered from the nasal cavity are hypothesised to refute or support this proposition. In order to carry out such evaluations, an efficient recovery method must first be established. This pilot study tested five different recovery methods on 3D printed models of nasal cavities. Among which, the use of the transparent AccuTrans® polyvinyl Siloxane casts demonstrated the best recovery efficiency with a median of 90% of deposited fibres recovered. The efficacy of this method was then verified on cadavers. Apart from a reliable recovery method, an understanding of the background population of fibres in nasal cavities, as well as the mechanisms of the transfer from the purported smothering textile to the nasal cavity is essential to evaluate the findings in these cases of suspected smothering. Samplings of the nasal cavities of 20 cadavers were thus carried out to gather data on the background population of fibres. Results showed that nasal cavities are not void of fibres, but the quantities are expected to be low, with a mean of 3.8 fibres per cavity recovered. Information on generic fibre class, colour, and length of these background fibres were also obtained with the use of low and high-power microscopy. The frequencies found in this population of fibres closely align with data from other population studies where black cotton was the most common. Finally, transfer experiments using the 3D printed models fitted with a respiratory pump to simulate breathing were carried out, along with testing on live volunteers in-vivo. The results demonstrated a verifiable transfer of fibres into the nasal cavity in smothering scenarios. Textiles of various shedding capacities were used in these tests and the findings suggest an influence of this variable on the quantities of fibres transferred.


Subject(s)
Nasal Cavity , Textiles , Humans , Pilot Projects , Cadaver
4.
Forensic Sci Int Synerg ; 2: 481-488, 2020.
Article in English | MEDLINE | ID: mdl-33385143

ABSTRACT

This review paper covers the forensic-relevant literature in fibres and textiles from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20Papers%202019.pdf.

5.
Phys Chem Chem Phys ; 12(8): 1879-85, 2010 Feb 28.
Article in English | MEDLINE | ID: mdl-20145855

ABSTRACT

Flexible luminescent polymer films were obtained by doping europium(III) complexes in blends of poly(methyl methacrylate) (PMMA) and the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf(2)N]. Different europium(III) complexes have been incorporated in the polymer/ionic liquid matrix: [C(6)mim][Eu(nta)(4)], [C(6)mim][Eu(tta)(4)], [Eu(tta)(3)(phen)] and [choline](3)[Eu(dpa)(3)], where nta is 2-naphthoyltrifluoroacetonate, tta is 2-thenoyltrifluoroacetonate, phen is 1,10-phenanthroline, dpa is 2,6-pyridinedicarboxylate (dipicolinate) and choline is the 2-hydroxyethyltrimethyl ammonium cation. Bright red photoluminescence was observed for all the films upon irradiation with ultraviolet radiation. The luminescent films have been investigated by high-resolution steady-state luminescence spectroscopy and by time-resolved measurements. The polymer films doped with beta-diketonate complexes are characterized by a very intense (5)D(0)-->(7)F(2) transition (up to 15 times more intense than the (5)D(0)-->(7)F(1)) transition, whereas a marked feature of the PMMA films doped with [choline](3)[Eu(dpa)(3)] is the long lifetime of the (5)D(0) excited state (1.8 ms).

6.
Inorg Chem ; 48(7): 3018-26, 2009 Apr 06.
Article in English | MEDLINE | ID: mdl-19243165

ABSTRACT

Highly luminescent anionic samarium(III) beta-diketonate and dipicolinate complexes were dissolved in the imidazolium ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C(6)mim][Tf(2)N]. The solubility of the complexes in the ionic liquid was ensured by a careful choice of the countercation of the samarium(III) complex. The samarium(III) complexes that were considered are [C(6)mim][Sm(tta)(4)], where tta is 2-thenoyltrifluoroacetonate; [C(6)mim][Sm(nta)(4)], where nta is 2-naphthoyltrifluoroacetonate; [C(6)mim][Sm(hfa)(4)], where hfa is hexafluoroacetylacetonate; and [choline](3)[Sm(dpa)(3)], where dpa is pyridine-2,6-dicarboxylate (dipicolinate) and [choline](+) is (2-hydroxyethyl)trimethyl ammonium. The crystal structures of the tetrakis samarium(III) beta-diketonate complexes revealed a distorted square antiprismatic coordination for the samarium(III) ion in all three cases. Luminescence spectra were recorded for the samarium(III) complexes dissolved in the imidazolium ionic liquid as well as in a conventional solvent, that is, acetonitrile or water for the beta-diketonate and dipicolinate complexes, respectively. These experiments demonstrate that [C(6)mim][Tf(2)N] is a suitable spectroscopic solvent for studying samarium(III) luminescence. High-luminescence quantum yields were observed for the samarium(III) beta-diketonate complexes in solution.

7.
Chemistry ; 15(6): 1449-61, 2009.
Article in English | MEDLINE | ID: mdl-19123214

ABSTRACT

The dissolution process of metal complexes in ionic liquids was investigated by a multiple-technique approach to reveal the solvate species of the metal in solution. The task-specific ionic liquid betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf(2)N]) is able to dissolve stoichiometric amounts of the oxides of the rare-earth elements. The crystal structures of the compounds [Eu(2)(bet)(8)(H(2)O)(4)][Tf(2)N](6), [Eu(2)(bet)(8)(H(2)O)(2)][Tf(2)N](6) x 2 H(2)O, and [Y(2)(bet)(6)(H(2)O)(4)][Tf(2)N](6) were found to consist of dimers. These rare-earth complexes are well soluble in the ionic liquids [Hbet][Tf(2)N] and [C(4)mim][Tf(2)N] (C(4)mim = 1-butyl-3-methylimidazolium). The speciation of the metal complexes after dissolution in these ionic liquids was investigated by luminescence spectroscopy, (1)H, (13)C, and (89)Y NMR spectroscopy, and by the synchrotron techniques EXAFS (extended X-ray absorption fine structure) and HEXS (high-energy X-ray scattering). The combination of these complementary analytical techniques reveals that the cationic dimers decompose into monomers after dissolution of the complexes in the ionic liquids. Deeper insight into the solution processes of metal compounds is desirable for applications of ionic liquids in the field of electrochemistry, catalysis, and materials chemistry.

8.
Dalton Trans ; (2): 298-306, 2009 Jan 14.
Article in English | MEDLINE | ID: mdl-19089011

ABSTRACT

Ionogels are solid oxide host networks confining at a meso-scale ionic liquids, and retaining their liquid nature. Ionogels were obtained by dissolving lanthanide(III) complexes in the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C6mim][Tf2N], followed by confinement of the lanthanide-doped ionic liquid mixtures in the pores of a nano-porous silica network. [C6mim][Ln(tta)4], where tta is 2-thenoyltrifluoroacetonate and Ln=Nd, Sm, Eu, Ho, Er, Yb, and [choline]3[Tb(dpa)3], where dpa=pyridine-2,6-dicarboxylate (dipicolinate), were chosen as the lanthanide complexes. The ionogels are luminescent, ion-conductive inorganic-organic hybrid materials. Depending on the lanthanide(III) ion, emission in the visible or the near-infrared regions of the electromagnetic spectrum was observed. The work presented herein highlights that the confinement did not disturb the first coordination sphere of the lanthanide ions and also showed the excellent luminescence performance of the lanthanide tetrakis beta-diketonate complexes. The crystal structures of the complexes [C6mim][Yb(tta)4] and [choline]3[Tb(dpa)3] are reported.

9.
Inorg Chem ; 46(13): 5302-9, 2007 Jun 25.
Article in English | MEDLINE | ID: mdl-17542576

ABSTRACT

The ferrocene-derivatives bis(ferrocenyl-ethynyl)-1,10-phenanthroline (Fc(2)phen) and ferrocenoyltrifluoroacetone (Hfta) have been used to synthesize ferrocene-containing rare-earth beta-diketonate complexes. The complexes [Ln(tta)(3)(Fc(2)phen)] and [Ln(fta)(3)(phen)] (where Ln = La, Nd, Eu, Yb) show structural similarities to the tris(2-thenoyltrifluoroacetonate)(1,10-phenanthroline)lanthanide(III) complexes, [Ln(tta)(3)(phen)]. The coordination number of the lanthanide ion is 8, and the coordination sphere can be described as a distorted dodecahedron. However, the presence of the ferrocene moieties shifts the ligand absorption bands of the rare-earth complexes to longer wavelengths so that the complexes can be excited not only by ultraviolet radiation but also by visible light of wavelengths up to 420 nm. Red photoluminescence is observed for the europium(III) complexes and near-infrared photoluminescence for the neodymium(III) and ytterbium(III) complexes. The presence of the ferrocene groups makes the rare-earth complexes hydrophobic and well-soluble in apolar organic solvents.

SELECTION OF CITATIONS
SEARCH DETAIL
...