Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 46(9): 328, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012544

ABSTRACT

Alpine ecosystems are important terrestrial carbon (C) pools, and microbial decomposers play a key role in litter decomposition. Microbial metabolic limitations in these ecosystems, however, remain unclear. The objectives of this study aim to elucidate the characteristics of microbial nutrient limitation and their C use efficiency (CUE), and to evaluate their response to environmental factors. Five ecological indicators were utilized to assess and compare the degree of microbial elemental homeostasis and the nutrient limitations of the microbial communities among varying stages of litter decomposition (L, F, and H horizon) along an altitudinal gradient (2800, 3000, 3250, and 3500 m) under uniform vegetation (Abies fabri) on Gongga Mountain, eastern Tibetan Plateau. In this study, microorganisms in the litter reached a strictly homeostatic of C content exclusively during the middle stage of litter decomposition (F horizon). Based on the stoichiometry of soil enzymes, we observed that microbial N- and P-limitation increased during litter degradation, but that P-limitation was stronger than N-limitation at the late stages of degradation (H horizon). Furthermore, an increase in microbial CUE corresponded with a reduction in microbial C-limitation. Additionally, redundancy analysis (RDA) based on forward selection further showed that microbial biomass C (MBC) is closely associated with the enzyme activities and their ratios, and MBC was also an important factor in characterizing changes in microbial nutrient limitation and CUE. Our findings suggest that variations in MBC, rather than N- and P-related components, predominantly influence microbial metabolic processes during litter decomposition on Gongga Mountain, eastern Tibetan Plateau.


Subject(s)
Carbon , Soil Microbiology , Carbon/metabolism , Nitrogen/metabolism , Tibet , Phosphorus/metabolism , Nutrients/metabolism , Plant Leaves/metabolism , Soil/chemistry , Biomass , Ecosystem , Bacteria/metabolism
2.
ACS Appl Mater Interfaces ; 16(17): 21782-21789, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38635211

ABSTRACT

Improving the efficiency of platinum group metals (Pt, Pd, Rh, etc.) in catalytic oxidation reactions remains an urgent topic. The conflict between the low-temperature activity and high-temperature stability of noble metals can hardly reach a consensus. For instance, Pt cluster catalysts supported on CeO2 with high low-temperature activity will suffer from deactivation due to the redispersion under high-temperature lean-burn reaction conditions. Herein, two Pt1/CeO2 prepared by the incipient wetness impregnation method using different Pt precursors possessed varied Pt-O and Pt-O-Ce coordination numbers (CNs). They showed various priorities in CO oxidation versus NH3 selective catalytic oxidation, materials with higher CNPt-O-Ce selectively catalyzing NH3 oxidation to N2 more superior, conversely materials with lower CNPt-O-Ce performing better in CO oxidation. After activation by H2 reduction, both formed massive Pt clusters on the CeO2 surface but showed drastically distinct stability in lean-burn CO oxidation reactions. By summarizing the experimental results of high-angle annular dark-field scanning transmission electron microscopy, X-ray absorption spectroscopy, Raman spectroscopy, in situ diffuse reflectance infrared Fourier transform spectroscopy, etc., it is beyond doubt that the difference in the initial states of Pt1 due to distinct precursors indeed determine the redispersion behavior of the reduced Pt clusters on CeO2. Materials with lower CNPt-O-Ce and higher CNPt-O are more likely to form robust Pt clusters, as they are not conducive to Pt anchoring, thus restricting the reversible structural evolution occurring under lean-burn CO oxidation and reductive conditions. This approach serves as a guide for the convenient and efficient construction and exploration of robust Pt cluster catalysts.

3.
Sci Total Environ ; 865: 161201, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36581269

ABSTRACT

Persulfate (PS) is widely used as an in situ chemical oxidation (ISCO) technology for groundwater and soil remediation. While conventional theory generally assumes that PS needs to be "activated" to produce reactive radicals for pollutant degradation, herein, PS without explicit activation system was discovered for the degradation of 1,2,3-TCP with the generation of reactive oxidation species (ROS). Comparison of five common ISCO oxidants (PS, peroxymonosulfate, hydrogen peroxide, potassium permanganate, and sodium percarbonate) indicated that only unactivated PS was able to degrade 1,2,3-TCP in both pure water and 12 natural water samples. 50 µM 1,2,3-TCP degradation can be continued as long as there is enough PS (50 mM). The degradation rate of 1,2,3-TCP increased 450 % when the PS concentration increased from 10 mM to 50 mM and 500 % when the temperature increased from 25 °C to 45 °C. Electron paramagnetic resonance (EPR) analyzes, hydroxyl radicals (·OH) probe reaction and radical quenching experiments confirmed the involvement of both sulfate radicals (SO4·-) and ·OH that were responsible for 1,2,3-TCP degradation and ·OH played a more important role. HCO3-, Cl- and NOM are three groundwater matrix species that are most likely to inhibit PS oxidation of 1,2,3-TCP. Compared to activated PS, unactivated PS is more promising and more practical for groundwater remediation, since it has several advantages: (1) longer lifetime and better long-term availability; (2) ability of enduring contaminant degradation; (3) applicable for low-permeability zones remediation and potential to alleviate contaminant rebound or tailing problems; (4) environmental friendly; and (5) lower cost. Overall, results of this study show that unactivated PS is a promising in situ remediation technology that may be a good candidate for the most challenging low permeable zone remediation.

4.
Environ Technol ; 43(18): 2834-2843, 2022 Jul.
Article in English | MEDLINE | ID: mdl-33739234

ABSTRACT

Benzothiazole (BTH) is an aromatic heterocyclic compound with wide industrial applications. In view of its toxicity and wide environmental presence, previous efforts have been made to decompose BTH via different degradation pathways. However, due to its recalcitrant nature, conventional biological treatment methods cannot completely degrade BTH in the wastewater. In this study, sulfate radical-based advanced oxidation process (AOP) technique has been adopted to degrade BTH in aqueous phase. Persulfate (PS) was employed as radical promotor to generate sulfate radical via heat activation. Degradation of BTH by thermally activated persulfate via AOP has been experimentally evaluated in a systematic manner. Laboratory efforts have been made to examine the impact of a number of physiochemical parameters including the type of oxidants, reaction temperature, initial concentrations of PS and BTH, solution pH, and the presence of anionic species. It shows that a higher BTH degradation rate can be achieved by lowering BTH initial concentration or increasing PS concentration. Increasing solution pH or the presence of 10 mM of Cl-, Br-, CO32-, or HCO3- species can decrease BTH degradation rate. Furthermore, the primary radical(s) responsible for BTH degradation have been identified as sulfate radical at an acidic aqueous condition, and hydroxyl radical and sulfate radical combined at a basic condition. This study provides the necessary theoretical and technical foundations for BTH degradation via sulfate radical-based AOP technique. The conclusions from this study can substantially promote the field application of AOP, especially sulfate radical-based AOP technique, for BTH degradation in wastewater treatment process.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Benzothiazoles , Oxidation-Reduction , Sulfates/chemistry , Water , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL