Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
BMC Cancer ; 24(1): 404, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561648

ABSTRACT

BACKGROUND: Accurate microsatellite instability (MSI) testing is essential for identifying gastric cancer (GC) patients eligible for immunotherapy. We aimed to develop and validate a CT-based radiomics signature to predict MSI and immunotherapy outcomes in GC. METHODS: This retrospective multicohort study included a total of 457 GC patients from two independent medical centers in China and The Cancer Imaging Archive (TCIA) databases. The primary cohort (n = 201, center 1, 2017-2022), was used for signature development via Least Absolute Shrinkage and Selection Operator (LASSO) and logistic regression analysis. Two independent immunotherapy cohorts, one from center 1 (n = 184, 2018-2021) and another from center 2 (n = 43, 2020-2021), were utilized to assess the signature's association with immunotherapy response and survival. Diagnostic efficiency was evaluated using the area under the receiver operating characteristic curve (AUC), and survival outcomes were analyzed via the Kaplan-Meier method. The TCIA cohort (n = 29) was included to evaluate the immune infiltration landscape of the radiomics signature subgroups using both CT images and mRNA sequencing data. RESULTS: Nine radiomics features were identified for signature development, exhibiting excellent discriminative performance in both the training (AUC: 0.851, 95%CI: 0.782, 0.919) and validation cohorts (AUC: 0.816, 95%CI: 0.706, 0.926). The radscore, calculated using the signature, demonstrated strong predictive abilities for objective response in immunotherapy cohorts (AUC: 0.734, 95%CI: 0.662, 0.806; AUC: 0.724, 95%CI: 0.572, 0.877). Additionally, the radscore showed a significant association with PFS and OS, with GC patients with a low radscore experiencing a significant survival benefit from immunotherapy. Immune infiltration analysis revealed significantly higher levels of CD8 + T cells, activated CD4 + B cells, and TNFRSF18 expression in the low radscore group, while the high radscore group exhibited higher levels of T cells regulatory and HHLA2 expression. CONCLUSION: This study developed a robust radiomics signature with the potential to serve as a non-invasive biomarker for GC's MSI status and immunotherapy response, demonstrating notable links to post-immunotherapy PFS and OS. Additionally, distinct immune profiles were observed between low and high radscore groups, highlighting their potential clinical implications.


Subject(s)
Radiomics , Stomach Neoplasms , Humans , Cohort Studies , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/genetics , Stomach Neoplasms/therapy , Retrospective Studies , Microsatellite Instability , Immunotherapy , Tomography, X-Ray Computed , Immunoglobulins
2.
Sensors (Basel) ; 24(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38676211

ABSTRACT

Taekwondo has evolved from a traditional martial art into an official Olympic sport. This study introduces a novel action recognition model tailored for Taekwondo unit actions, utilizing joint-motion data acquired via wearable inertial measurement unit (IMU) sensors. The utilization of IMU sensor-measured motion data facilitates the capture of the intricate and rapid movements characteristic of Taekwondo techniques. The model, underpinned by a conventional convolutional neural network (CNN)-based image classification framework, synthesizes action images to represent individual Taekwondo unit actions. These action images are generated by mapping joint-motion profiles onto the RGB color space, thus encapsulating the motion dynamics of a single unit action within a solitary image. To further refine the representation of rapid movements within these images, a time-warping technique was applied, adjusting motion profiles in relation to the velocity of the action. The effectiveness of the proposed model was assessed using a dataset compiled from 40 Taekwondo experts, yielding remarkable outcomes: an accuracy of 0.998, a precision of 0.983, a recall of 0.982, and an F1 score of 0.982. These results underscore this time-warping technique's contribution to enhancing feature representation, as well as the proposed method's scalability and effectiveness in recognizing Taekwondo unit actions.

3.
Front Oncol ; 14: 1335930, 2024.
Article in English | MEDLINE | ID: mdl-38352895

ABSTRACT

Solid pseudopapillary neoplasm (SPN) is a rare tumor mostly occurring in the pancreas. They are low-grade malignant tumors of the exocrine pancreas that occasionally metastasize, usually to the liver or peritoneum. Additionally, multiple metastases of extrapancreatic SPN to the liver are extremely rare and have been reported before. This study presents a case of a 13-year-old male patient with retroperitoneal SPN and multiple hepatic metastases. The patient presented with abdominal trauma and underwent enhanced CT, which revealed upper pancreatic occupancy and three hypodense foci in the right lobe of the liver. Moreover, increased spleen size was noted. The patient's serum tumor marker CA125 was increased to 39.00 U/mL (N < 35.0 U/mL), and circulating tumor cells were elevated to 10.2 FU/3 mL (N < 8.7 FU/3 mL). The patient underwent retroperitoneal occupancy resection and splenectomy, followed by resection of liver metastases 7 months after the surgery. Furthermore, multiple liver metastases from retroperitoneal SPN were confirmed postoperatively. The patient recovered for 1 year without tumor recurrence. This case emphasizes the importance of evaluating serum tumor markers and medical imaging in young patients as well as the fact that surgery appears to be the preferred treatment option for multiple metastases in SPN.

4.
Animals (Basel) ; 14(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38254476

ABSTRACT

Goats belong to a group of animals called small ruminants and are critical sources of livelihood for rural people. Genomic sequencing can provide information ranging from basic knowledge about goat diversity and evolutionary processes that shape genomes to functional information about genes/genomic regions. In this study, we exploited a whole-genome sequencing data set to analyze the genetic diversity, population structure and selection signatures of 44 individuals belonging to 5 Ethiopian goat populations: 12 Aberegalle (AB), 5 Afar (AF), 11 Begait (BG), 12 Central highlands (CH) and 5 Meafure (MR) goats. Our results revealed the highest genetic diversity in the BG goat population compared to the other goat populations. The pairwise genetic differentiation (FST) among the populations varied and ranged from 0.011 to 0.182, with the closest pairwise value (0.003) observed between the AB and CH goats and a distant correlation (FST = 0.182) between the BG and AB goats, indicating low to moderate genetic differentiation. Phylogenetic tree, ADMIXTURE and principal component analyses revealed a classification of the five Ethiopian goat breeds in accordance with their geographic distribution. We also found three top genomic regions that were detected under selection on chromosomes 2, 5 and 13. Moreover, this study identified different candidate genes related to milk characteristics (GLYCAM1 and SRC), carcass (ZNF385B, BMP-7, PDE1B, PPP1R1A, FTO and MYOT) and adaptive and immune response genes (MAPK13, MAPK14, SCN7A, IL12A, EST1 DEFB116 and DEFB119). In conclusion, this information could be helpful for understanding the genetic diversity and population structure and selection scanning of these important indigenous goats for future genetic improvement and/or as an intervention mechanism.

5.
Sensors (Basel) ; 23(19)2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37836879

ABSTRACT

Issues of fairness and consistency in Taekwondo poomsae evaluation have often occurred due to the lack of an objective evaluation method. This study proposes a three-dimensional (3D) convolutional neural network-based action recognition model for an objective evaluation of Taekwondo poomsae. The model exhibits robust recognition performance regardless of variations in the viewpoints by reducing the discrepancy between the training and test images. It uses 3D skeletons of poomsae unit actions collected using a full-body motion-capture suit to generate synthesized two-dimensional (2D) skeletons from desired viewpoints. The 2D skeletons obtained from diverse viewpoints form the training dataset, on which the model is trained to ensure consistent recognition performance regardless of the viewpoint. The performance of the model was evaluated against various test datasets, including projected 2D skeletons and RGB images captured from diverse viewpoints. Comparison of the performance of the proposed model with those of previously reported action recognition models demonstrated the superiority of the proposed model, underscoring its effectiveness in recognizing and classifying Taekwondo poomsae actions.

6.
Insights Imaging ; 14(1): 118, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37405591

ABSTRACT

PURPOSE: To develop a noninvasive radiomics-based nomogram for identification of disagreement in pathology between endoscopic biopsy and postoperative specimens in gastric cancer (GC). MATERIALS AND METHODS: This observational study recruited 181 GC patients who underwent pre-treatment computed tomography (CT) and divided them into a training set (n = 112, single-energy CT, SECT), a test set (n = 29, single-energy CT, SECT) and a validation cohort (n = 40, dual-energy CT, DECT). Radiomics signatures (RS) based on five machine learning algorithms were constructed from the venous-phase CT images. AUC and DeLong test were used to evaluate and compare the performance of the RS. We assessed the dual-energy generalization ability of the best RS. An individualized nomogram combined the best RS and clinical variables was developed, and its discrimination, calibration, and clinical usefulness were determined. RESULTS: RS obtained with support vector machine (SVM) showed promising predictive capability with AUC of 0.91 and 0.83 in the training and test sets, respectively. The AUC of the best RS in the DECT validation cohort (AUC, 0.71) was significantly lower than that of the training set (Delong test, p = 0.035). The clinical-radiomic nomogram accurately predicted pathologic disagreement in the training and test sets, fitting well in the calibration curves. Decision curve analysis confirmed the clinical usefulness of the nomogram. CONCLUSION: CT-based radiomics nomogram showed potential as a clinical aid for predicting pathologic disagreement status between biopsy samples and resected specimens in GC. When practicability and stability are considered, the SECT-based radiomics model is not recommended for DECT generalization. CRITICAL RELEVANCE STATEMENT: Radiomics can identify disagreement in pathology between endoscopic biopsy and postoperative specimen.

7.
Sensors (Basel) ; 23(12)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37420932

ABSTRACT

Defect inspection is important to ensure consistent quality and efficiency in industrial manufacturing. Recently, machine vision systems integrating artificial intelligence (AI)-based inspection algorithms have exhibited promising performance in various applications, but practically, they often suffer from data imbalance. This paper proposes a defect inspection method using a one-class classification (OCC) model to deal with imbalanced datasets. A two-stream network architecture consisting of global and local feature extractor networks is presented, which can alleviate the representation collapse problem of OCC. By combining an object-oriented invariant feature vector with a training-data-oriented local feature vector, the proposed two-stream network model prevents the decision boundary from collapsing to the training dataset and obtains an appropriate decision boundary. The performance of the proposed model is demonstrated in the practical application of automotive-airbag bracket-welding defect inspection. The effects of the classification layer and two-stream network architecture on the overall inspection accuracy were clarified by using image samples collected in a controlled laboratory environment and from a production site. The results are compared with those of a previous classification model, demonstrating that the proposed model can improve the accuracy, precision, and F1 score by up to 8.19%, 10.74%, and 4.02%, respectively.


Subject(s)
Artificial Intelligence , Rivers , Algorithms
8.
Cells ; 12(13)2023 07 03.
Article in English | MEDLINE | ID: mdl-37443803

ABSTRACT

Gram-negative bacterial infections pose a significant threat to public health. Toll-like receptor 4 (TLR4) recognizes bacterial lipopolysaccharide (LPS) and induces innate immune responses, autophagy, and cell death, which have major impacts on the body's physiological homeostasis. However, the role of TLR4 in bacterial LPS-induced autophagy and apoptosis in large mammals, which are closer to humans than rodents in many physiological characteristics, remains unknown. So far, few reports focus on the relationship between TLR, autophagy, and apoptosis in large mammal levels, and we urgently need more tools to further explore their crosstalk. Here, we generated a TLR4-enriched mammal model (sheep) and found that a high-dose LPS treatment blocked autophagic degradation and caused strong innate immune responses and severe apoptosis in monocytes/macrophages of transgenic offspring. Excessive accumulation of autophagosomes/autolysosomes might contribute to LPS-induced apoptosis in monocytes/macrophages of transgenic animals. Further study demonstrated that inhibiting TLR4 downstream NF-κB or p38 MAPK signaling pathways reversed the LPS-induced autophagy activity and apoptosis. These results indicate that the elevated TLR4 aggravates LPS-induced monocytes/macrophages apoptosis by leading to lysosomal dysfunction and impaired autophagic flux, which is associated with TLR4 downstream NF-κB and MAPK signaling pathways. This study provides a novel TLR4-enriched mammal model to study its potential effects on autophagy activity, inflammation, oxidative stress, and cell death. These findings also enrich the biological functions of TLR4 and provide powerful evidence for bacterial infection.


Subject(s)
Lipopolysaccharides , NF-kappa B , Humans , Animals , Sheep , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4/metabolism , Apoptosis , Mammals/metabolism , Autophagy
9.
Int J Antimicrob Agents ; 62(3): 106907, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37385564

ABSTRACT

Salmonella enterica is a food-borne pathogen that poses a severe threat to both poultry production and human health. Antibiotics are critical for the initial treatment of bacterial infections. However, the overuse and misuse of antibiotics results in the rapid evolution of antibiotic-resistant bacteria, and the discovery and development of new antibiotics are declining. Therefore, understanding antibiotic resistance mechanisms and developing novel control measures are essential. In the present study, GC-MS-based metabolomics analysis was performed to determine the metabolic profile of gentamicin sensitive (SE-S) and resistant (SE-R) S. enterica. Fructose was identified as a crucial biomarker. Further analysis demonstrated a global depressed central carbon metabolism and energy metabolism in SE-R. The decrease in the pyruvate cycle reduces the production of NADH and ATP, causing a decrease in membrane potential, which contributes to gentamicin resistance. Exogenous fructose potentiated the effectiveness of gentamicin in killing SE-R by promoting the pyruvate cycle, NADH, ATP and membrane potential, thereby increasing gentamicin intake. Further, fructose plus gentamicin improved the survival rate of chicken infected with gentamicin-resistant Salmonella in vivo. Given that metabolite structures are conserved across species, fructose identified from bacteria could be used as a biomarker for breeding disease-resistant phenotypes in chicken. Therefore, a novel strategy is proposed for fighting against antibiotic-resistant S. enterica, including exploring molecules suppressed by antibiotics and providing a new approach to find pathogen targets for disease resistance in chicken breeding.


Subject(s)
Anti-Bacterial Agents , Salmonella enteritidis , Animals , Humans , Anti-Bacterial Agents/pharmacology , Gentamicins/pharmacology , NAD , Chickens/microbiology , Metabolomics , Adenosine Triphosphate
10.
J Colloid Interface Sci ; 644: 454-465, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37137212

ABSTRACT

Reasonable heterointerface modification can effectively regulate and enhance the microwave absorption of electromagnetic materials. The surface of magnetic permalloy (PM) microparticles is modified herein by coating double-layer metal organic frameworks (MOF), which are composed of a 2-methylimidazole cobalt salt (ZIF-67) layer and a 2-methylimidazole zinc salt (ZIF-8) layer. A stable heterointerface structure with cobalt/carbon (Co/C) and zinc/carbon (Zn/C) layers is formed on the surface of PM microparticles after pyrolysis. These particles include two types of composite particles of PM solely encapsulated by ZIF-67 or ZIF-8, PM@ZIF67 and PM@ZIF8, respectively, and two types of composite PM particles with a double-layered MOF outer shell structure obtained by exchanging the coating sequence (PM@ZIF8@ZIF67 and PM@ZIF67@ZIF8). Furthermore, the thermal decomposition temperature has a significant impact on the surface morphology and magnetic properties of the composite particles. After pyrolyzing at 500 °C, the PM@ZIF67@ZIF8 samples exhibit the highest microwave absorption performance among these samples. Specifically, the minimum reflection loss and effective absorption bandwidth of PM@ZIF67@ZIF8 after pyrolyzing at 500 °C can reach -47.3 dB at a matching thickness of 3.8 mm and 5.3 GHz at a matching thickness of 2.5 mm, respectively. A heterointerface with an electrical field orientation is created in the PM@ZIF67@ZIF8 particles, which effectively enhances the interface polarization and dipole polarization. Furthermore, the formation of a three-dimensional carbon network after pyrolysis is also useful for optimizing impedance matching and enhancing magneto-electric synergism.

11.
Microbiol Spectr ; : e0479922, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36917000

ABSTRACT

Chickens have been used as a valuable and traditional model for studies on basic immunology. B lymphocytes were first identified in the bursa of Fabricius (BF) of broilers. The microbiota is important for immune system development and function. However, the effect of the microbiota on mediating B cell development and its regulatory mechanism is poorly elucidated. Here, we show that the gut microbiota is associated with the development of bursal B cells in young chickens. Changing patterns of both the alpha diversity and the expression of the B cell marker Bu-1α in the gut microbiota were related to the ages of chickens at different growth phases. Further correlation analysis revealed the marked correlation between the relative abundances of Intestinimonas, Bilophila, Parasutterella, Bacteroides, Helicobacter, Campylobacter, and Mucispirillum and the expression of Bu-1α. In antibiotic-treated chickens, BF and B cell development had aberrations as the relative abundance of the microbiota in early life decreased. These findings were consistent with Spearman's correlation results. Single-cell transcriptome analysis indicated that the heterogeneity in the cellular composition and developmental trajectory of bursal B cells from antibiotic-treated chickens was large. We found a novel subpopulation of unnamed B cells and identified Taf1 as a new pivotal regulator of B cell lineage differentiation. Therefore, we provide novel insights into the regulatory role of the gut microbiota in B cell development in early life and the maturation of host humoral immunity. IMPORTANCE In this study, we used young broilers to investigate the relationship between their gut microbiota and bursal B cell development. We characterized the important variables, microbes, B cells, and immunoglobulins during the posthatch development of birds. We also identified several candidate taxa in the cecal contents associated with B cells. Our study provides a rich resource and cell-cell cross talk model supporting B cell differentiation from the bursa in vitro at single-cell resolution. Furthermore, we determined a new pivotal regulator (Taf1) of B cell differentiation. We believe that our study makes a significant contribution to the literature because our findings may elucidate the role of the gut microbiota in B cell differentiation. This study also serves as a basis for developing new strategies that modulate B cell differentiation to prevent diseases.

12.
Genes (Basel) ; 14(3)2023 03 08.
Article in English | MEDLINE | ID: mdl-36980942

ABSTRACT

Carotenoid consumption decreases the risk of cancer, osteoporosis, or neurodegenerative diseases through interrupting the formation of free radicals. The deposition of carotenoids in chicken skin makes the skin color turn from white into yellow. The enzyme ß-carotene oxygenase 2 (BCO2) plays a key role during the degradation process of carotenoids in skin. How the BCO2 affects the skin color of the chicken and whether it is the key factor that results in the phenotypic difference between yellow- and white-skin chickens are still unclear. In this research, the measurement of the concentration of carotenoids in chicken skin by HPLC showed that the carotenoid concentration in chickens with a yellow skin was significantly higher than that in white-skin chickens. Moreover, there were significant differences in BCO2 gene expression in the back skin between yellow- and white-skin chickens. Scanning the SNPs in BCO2 gene revealed a G/A mutation in exon 6 of the BCO2 gene in white and yellow skin chicken. Generally, one SNP c.890A>G was found to be associated with the chicken skin color and may be used as a genetic marker in breeding for yellow skin in Chinese indigenous chickens.


Subject(s)
Chickens , Dioxygenases , Animals , Carotenoids/metabolism , Chickens/genetics , Chickens/metabolism , Dioxygenases/genetics , Dioxygenases/metabolism , Mutation , Polymorphism, Single Nucleotide
13.
Front Immunol ; 14: 1018867, 2023.
Article in English | MEDLINE | ID: mdl-36776875

ABSTRACT

The transition period is the stage of the high incidence of metabolic and infectious diseases in dairy cows. Improving transition dairy cows' health is crucial for the industry. This study aimed to determine the effects of dietary supplementation medium-chain fatty acids (MCFAs) on immune function, metabolic status, performance of transition dairy cows. Twenty multiparous Holstein cows randomly assigned to two treatments at 35 d before calving. 1) CON (fed the basal 2) MCFA treatment (basal diet was supplemented at an additional 20 g MCFAs mixture every day) until 70 d after calving. The results showed that the serum amyloid A myeloperoxidase concentrations in the blood of cows in MCFA treatment significantly decreased during the early lactation (from 1 d to 28 d after calving) 0.03, 0.04, respectively) compared with the CON, while the tumor necrosis factor concentration was significantly decreased at 56 d after calving (P = 0.02). In addition, the concentration of insulin in the pre-calving (from 21 d before calving to calving) blood of cows in MCFA treatment was significantly decreased (P = 0.04), and concentration of triglyceride also showed a downward trend at 28 d after calving 0.07). Meanwhile, MCFAs supplementation significantly decreased the concentrations of lithocholic acid, hyodeoxycholic acid, and hyocholic acid in the blood at 1 d calving (P = 0.02, < 0.01, < 0.01, respectively), and the level of hyocholic acid taurocholic acid concentrations (P < 0.01, = 0.01, respectively) decreased dramatically at 14 d after calving. However, compared with the CON, the pre-calving dry matter intake and the early lactation milk yield in MCFA treatment were significantly decreased (P = 0.05, 0.02, respectively). In conclusion, MCFAs supplementation transition diet could improve the immune function and metabolic status of dairy cows, and the health of transition cows might be beneficial from the endocrine status.


Subject(s)
Dietary Supplements , Fatty Acids , Lactation , Animals , Cattle , Female , Diet/veterinary , Fatty Acids/administration & dosage
14.
Poult Sci ; 102(3): 102298, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36638759

ABSTRACT

This study aimed to assess the effect of inbreeding on production traits using a long-term closed-line population recorded for residual feed intake (RFI). The study first used data from a previously reported population to determine the appropriate period of divergent selection for RFI. The results showed that RFI had similar moderate heritability estimates (0.28-0.34) during the fast-growing period (7-12 wk), and RFI at 7 to 10 wk had the highest heritability (0.34). Therefore, divergent selection was performed in a Chinese broiler population for RFI at 7 to 10 wk; the total sample size from generations zero (G0) to 13 was 9050. The divergence between the 2 lines increased steadily throughout generations, resulting in G13 with average RFI values of 304.55 in high RFI (HRFI) males, -160.31 in low RFI (LRFI) males, 296.30 in HRFI females and -157.55 in LRFI females. The feed intake (FI) and feed conversion ratio were almost higher in HRFI broilers than in LRFI broilers, and the magnitude of the difference in FI increased from approximately 4% for both sexes in G1 to approximately 33% in G13. Body weight gain was irregular from G1 to G13 and higher in LRFI broilers than in HRFI broilers after G10. Indeed, the HRFI broilers consumed more food, but they were lighter than LRFI broilers. In G13, LRFI males had heavier slaughter weight, longer cecum length, more white blood cells (WBC), red blood cells (RBC) and hemoglobin (HGB), but triglycerides, lower dressed percentage, percentage of half eviscerated yield, and eviscerated yield than HRFI males. LRFI females had a higher percentage of breast muscle and gizzard yield, longer cecum length, and more WBCs, RBCs and HGB but less abdominal fat and serum total cholesterol than HRFI females. This study was the first to verify that long-term divergent selection for RFI in Chinese broiler chickens is positive and beneficial.


Subject(s)
Chickens , Eating , Animals , Female , Male , Animal Feed/analysis , Cecum , Chickens/genetics , Phenotype
15.
Poult Sci ; 102(1): 102267, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442306

ABSTRACT

The use of antibiotics leads to antibiotic residues in livestock and poultry products, adversely affecting human health. Ciprofloxacin (CFX) is a broad-spectrum antibiotic shared between animals and humans that is useful in treatments besides infections. However, changes in the gut microbiota caused by CFX and the possible link with the elimination of CFX residues have not been investigated. Herein, we used the Silkie chicken model to study the changes in the gut microbiota during the entire CFX-metabolic repertoire. We detected CFX residues in different tissues and showed that the elimination time of CFX from different tissues was dissimilar (liver > kidney > chest muscle > skin). Analysis of liver and kidney injury biomarkers and plasma antioxidant indices indicated slight hepatotoxicity and nephrotoxicity in the Silkie chickens. Importantly, the changes in the gut microbial community predominantly occurred early in the metabolic process. Correlation analysis revealed that the particular bacterial microbiota were associated with the pharmacokinetics of CFX in different Silkie chicken tissues (e.g., aerobic bacteria, including Escherichia and Coprococcus, and anaerobic bacteria, including Fusobacterium, Ruminococcus, Bifidobacterium, and Eubacterium). Collectively, certain microbiota may boost antibiotic metabolism and participate in restoring the microbial consortia after CFX is metabolized. Therefore, regulating the core intestinal microbiota may reduce foodborne antibiotics and accelerate the development of drug resistance.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Humans , Anti-Bacterial Agents , Ciprofloxacin , Chickens
16.
Zhonghua Nan Ke Xue ; 29(8): 746-750, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-38619524

ABSTRACT

The incidence of erectile dysfunction (ED) has been reported to increase after COVID-19 infection, and it is common in COVID-19 patients during recovery. This paper presents a summary of the latest research progress on COVID-19-induced ED and explores the traditional Chinese medicine (TCM) diagnosis and treatment approach based on TCM theory and clinical experience. COVID-19 infection may lead to ED through endothelial dysfunction, testicular injury, hormonal imbalance, and psychological factors. The pathogenesis of COVID-19-related ED is mainly characterized by deficiency of the body's essence and excess of pathogenic factors. In the early stage, it is dominated by deficiency of qi and yin, while in the middle stage, it is mainly due to deficiency of qi and blood stasis. In the long-term, ED is based on the imbalance of yin and yang, with liver stagnation and qi stagnation often co-existing. Clinical manifestations of ED vary, and treatment should focus on tonifying qi and nourishing yin, promoting blood circulation, regulating yin and yang, and soothing liver depression according to TCM diagnosis and treatment principles.


Subject(s)
COVID-19 , Erectile Dysfunction , Male , Humans , Erectile Dysfunction/diagnosis , Erectile Dysfunction/etiology , Erectile Dysfunction/therapy , Medicine, Chinese Traditional , Liver , COVID-19 Testing
17.
Sleep Med ; 100: 1-5, 2022 12.
Article in English | MEDLINE | ID: mdl-35969946

ABSTRACT

BACKGROUND: This study aimed to assess the association between snoring frequency and male serum testosterone levels. METHODS: We analyzed data from the 2015 to 2016 National Health and Nutrition Examination Survey. Snoring frequency was relied on self-report, and was divided into never, rarely (1-2 nights a week), occasionally (3-4 nights a week), or frequently (5 or more nights a week) groups. Multivariable analysis controlling for age, race, waist circumference, total cholesterol, diabetes, and hypertension was used to evaluate the association between snoring frequency and male serum testosterone. Furthermore, we performed the subgroup analyses stratified by age and waist circumference. RESULTS: Our analysis included 1900 participants. In the fully adjusted model, only frequent snoring was inversely associated with male serum testosterone (ß -0.053, 95% CI -0.101 to -0.006, P = 0.028); According to the subgroup analysis stratified by age, only in 40-59 years group, frequent snoring was inversely associated with male serum testosterone in the fully adjusted model (ß -0.113, 95% CI -0.196 to -0.031, P = 0.007). As for the subgroup analysis stratified by waist circumference, our results showed only in the waist circumference ≥102 cm group (abdominal obesity), frequent snoring was inversely associated with male serum testosterone (ß -0.133, 95% CI -0.216 to -0.05, P = 0.002). CONCLUSIONS: Frequent snoring (5 or more nights a week) is inversely associated with male serum testosterone levels, especially in those aged 40-59 years and those with abdominal obesity.


Subject(s)
Obesity, Abdominal , Snoring , Male , Humans , Adult , Middle Aged , Nutrition Surveys , Snoring/epidemiology , Snoring/complications , Obesity, Abdominal/complications , Waist Circumference , Obesity/complications , Testosterone
18.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1122-1132, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35866607

ABSTRACT

Delving into porcine embryonic myogenesis is the key to elucidate the complex regulation of breed-specific differences in growth performance and meat production. Increasing evidence proves that pigs with less meat production show earlier embryonic myogenesis, but little is known about the underlying mechanisms. In this study, we examine the longissimus dorsi muscle (LDM) by immunohistochemistry and confirm that the differentiation of myogenic progenitors is increased ( P<0.05) in Lantang (LT, fatty) pigs compared with that in Landrace (LR, lean) pigs, which results in more ( P<0.001) differentiated myoblasts (Pax7 -/MyoD +) and less ( P<0.001) myogenic progenitors (Pax7 +/MyoD -) in LT pigs at 35 days post-conception (35dpc). Additionally, embryonic myogenic progenitors isolated from LT pigs show greater ( P<0.001) differentiation capacity with earlier expression of MyoD compared with those from LR pigs. Moreover, Notch signaling is more active ( P<0.05) in LR pig myogenic progenitors than in LT pig myogenic progenitors. Inhibition of Notch signaling in LR myogenic progenitors suppresses Pax7 expression and increases MyoD expression, thus promoting myogenic differentiation. Consistently, the process of myogenic progenitors differentiating into myoblasts in ex vivo embryo limbs is accelerated when Notch signaling is inhibited. These results indicate that Notch signaling facilitates the maintenance of myogenic progenitors and antagonizes myogenic differentiation by promoting Pax7 expression and preventing MyoD expression in LR pigs.


Subject(s)
Muscle Development , Myoblasts , Animals , Cell Differentiation , Muscle Development/physiology , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Signal Transduction , Swine
19.
Animals (Basel) ; 12(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35327080

ABSTRACT

The current study was designed to investigate the chemical composition, amino acid content, and rumen degradation characteristics (nylon bag method) of six organic feeds to illustrate their feeding values. The feeds analyzed were: corn grain (CG), soybean cake (SC), wheat bran (WB), corn silage (CS), oat hay (OT), and alfalfa hay (AF). Our results showed that the contents of crude protein (CP) (47.46%) and ether extract (EE) (8.23%) in SC were highest. The contents of neutral detergent fiber (NDF) (65.00%) and acid detergent fiber (ADF) (39.16%) in OT were highest. The contents of total amino acid (TAA) (42.95%) and essential amino acid (EAA) (19.73%) in SC were highest. Among SC, WB, and CG, the effective degradation rate (ED) of dry matter (DM) is SC (87.89%) > WB (73.32%) > CG (64.25%); the ED value of CP is CG (82.37%) > WB (82.40%) > SC (60.47%). Among CS, OT, and AF, the effective degradation rate (ED) of DM is CS (72.68%) > OT (59.97%) > AF (58.89%); the ED value of CP is AF (76.46%) > CS (72.03%) > OT (71.99%). In conclusion, the chemical composition, amino acid content, and rumen degradation rate of SC and AF were better than those of the other four feeds.

20.
Front Genet ; 13: 820297, 2022.
Article in English | MEDLINE | ID: mdl-35299951

ABSTRACT

Hyperpigmentation of the visceral peritoneum (HVP) has been becoming one of the most challenging problems in yellow-feathered chicken production, which seriously affected chicken carcass quality traits. Detecting which genes dominantly impact pigmentation in the peritoneum tissues is of great benefit to the genetic improvement of HVP. To investigate the genetic mechanism of HVP in yellow-feathered broilers, genome-wide association studies (GWASs) were conducted in the F2 generation of a cross broiler population with 395 birds. A total of 115,706 single-nucleotide polymorphisms (SNPs) of 122,415 were retained to identify quantitative trait loci (QTL) associated to HVP in chicken. The GWAS results based on the logistic mixed model (LMM) revealed that a narrow genomic location on chromosomes 1 (49.2-51.3 Mb) was significantly associated (p ≤ 4.32 × 10-7) with HVP, which contained 23 SNP makers related to 14 functional genes (MFNG, POLDIP3, POLR2F, PICK1, PDXP, SGSM3, RANGAP1, MYH9, RPL3, GALP3, LGALS1, MICALL1, ATF4, and CYP2D6). Four highly associated (p < 10-5) haplotype blocks of 0.80 kb (two SNPs), 0.06 kb (two SNPs), 0.95 kb (two SNPs), and 0.03 kb (two SNPs) were identified with two, two, four, and four distinct haplotypes, respectively. As a melanoma-associated gene, CYP2D6 were also possibly involved in the development of HVP occurring in chicken with two significant variations (rs314284996 and rs317955795) in the promoter regions. Further tests revealed that the expression of CYP2D6 was obviously higher in the visceral peritoneum tissue of chicken with HVP than that in the normal group (p < 0.05). Our results provide a novel clue to understand the genetic mechanism of HVP generation in chicken, and the mapped QTL or candidate genes might serve for genomic selection to improve carcass quality in the yellow-feathered chicken industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...