Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Semin Cancer Biol ; 50: 13-20, 2018 06.
Article in English | MEDLINE | ID: mdl-29684436

ABSTRACT

The evolutionally conserved forkhead box O (Foxo) family of transcription factors is pivotal in the control of nutrient sensing and stress responses. Recent studies have revealed that the Foxo proteins have been rewired to regulate highly specialized T cell activities. Here, we review the latest advances in the understanding of how Foxo transcription factors control T cell biology, including T cell trafficking, naive T cell homeostasis, effector and memory responses, as well as the differentiation and function of regulatory T cells. We also discuss the emerging evidence on Foxo-mediated regulation in antitumor immunity. Future work will further explore how the Foxo-dependent programs in T cells can be exploited for cancer immunotherapy.


Subject(s)
Forkhead Transcription Factors/genetics , Immunotherapy , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Cell Differentiation/immunology , Forkhead Transcription Factors/immunology , Humans , Neoplasms/pathology , Signal Transduction/genetics , T-Lymphocytes, Regulatory/pathology
2.
Nat Commun ; 8(1): 1062, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29051483

ABSTRACT

Peripheral T cells are maintained in the absence of vigorous stimuli, and respond to antigenic stimulation by initiating cell cycle progression and functional differentiation. Here we show that depletion of the Ets family transcription factor GA-binding protein (GABP) in T cells impairs T-cell homeostasis. In addition, GABP is critically required for antigen-stimulated T-cell responses in vitro and in vivo. Transcriptome and genome-wide GABP-binding site analyses identify GABP direct targets encoding proteins involved in cellular redox balance and DNA replication, including the Mcm replicative helicases. These findings show that GABP has a nonredundant role in the control of T-cell homeostasis and immunity.


Subject(s)
GA-Binding Protein Transcription Factor/physiology , T-Lymphocytes/immunology , Adaptive Immunity , Animals , Antigens/immunology , Binding Sites , CD4 Antigens/genetics , Cell Proliferation , Cells, Cultured , DNA Replication , GA-Binding Protein Transcription Factor/genetics , Homeostasis , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Minichromosome Maintenance Proteins/metabolism , T-Lymphocytes/enzymology , Transcription, Genetic
3.
Nature ; 529(7587): 532-6, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26789248

ABSTRACT

Regulatory T (Treg) cells expressing the transcription factor Foxp3 have a pivotal role in maintaining immunological self-tolerance; yet, excessive Treg cell activities suppress anti-tumour immune responses. Compared to the resting Treg (rTreg) cell phenotype in secondary lymphoid organs, Treg cells in non-lymphoid tissues exhibit an activated Treg (aTreg) cell phenotype. However, the function of aTreg cells and whether their generation can be manipulated are largely unexplored. Here we show that the transcription factor Foxo1, previously demonstrated to promote Treg cell suppression of lymphoproliferative diseases, has an unexpected function in inhibiting aTreg-cell-mediated immune tolerance in mice. We find that aTreg cells turned over at a slower rate than rTreg cells, but were not locally maintained in tissues. aTreg cell differentiation was associated with repression of Foxo1-dependent gene transcription, concomitant with reduced Foxo1 expression, cytoplasmic localization and enhanced phosphorylation at the Akt sites. Treg-cell-specific expression of an Akt-insensitive Foxo1 mutant prevented downregulation of lymphoid organ homing molecules, and impeded Treg cell homing to non-lymphoid organs, causing CD8(+) T-cell-mediated autoimmune diseases. Compared to Treg cells from healthy tissues, tumour-infiltrating Treg cells downregulated Foxo1 target genes more substantially. Expression of the Foxo1 mutant at a lower dose was sufficient to deplete tumour-associated Treg cells, activate effector CD8(+) T cells, and inhibit tumour growth without inflicting autoimmunity. Thus, Foxo1 inactivation is essential for the migration of aTreg cells that have a crucial function in suppressing CD8(+) T-cell responses; and the Foxo signalling pathway in Treg cells can be titrated to break tumour immune tolerance preferentially.


Subject(s)
Autoimmunity/immunology , CD8-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/metabolism , Immune Tolerance/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Differentiation , Cell Movement/immunology , Down-Regulation , Female , Forkhead Box Protein O1 , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Lymphocyte Activation , Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Male , Mice , Mutation , Phosphorylation , Signal Transduction/immunology , T-Lymphocytes, Regulatory/cytology , Transcription, Genetic
4.
Cell ; 164(3): 365-77, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26806130

ABSTRACT

Malignancy can be suppressed by the immune system in a process termed immunosurveillance. However, to what extent immunosurveillance occurs in spontaneous cancers and the composition of participating cell types remains obscure. Here, we show that cell transformation triggers a tissue-resident lymphocyte response in oncogene-induced murine cancer models. Non-circulating cytotoxic lymphocytes, derived from innate, T cell receptor (TCR)αß, and TCRγδ lineages, expand in early tumors. Characterized by high expression of NK1.1, CD49a, and CD103, these cells share a gene-expression signature distinct from those of conventional NK cells, T cells, and invariant NKT cells. Generation of these lymphocytes is dependent on the cytokine IL-15, but not the transcription factor Nfil3 that is required for the differentiation of tumor-infiltrating NK cells, and IL-15 deficiency, but not Nfil3 deficiency, results in accelerated tumor growth. These findings reveal a tumor-elicited immunosurveillance mechanism that engages unconventional type-1-like innate lymphoid cells and type 1 innate-like T cells.


Subject(s)
Lymphocytes/immunology , Mammary Neoplasms, Experimental/immunology , Monitoring, Immunologic , T-Lymphocyte Subsets/immunology , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Granzymes/metabolism , Interleukin-15/immunology , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, alpha-beta/metabolism
5.
J Immunol ; 194(6): 2635-42, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25672759

ABSTRACT

MicroRNA (miR)-mediated regulation of protein abundance is a pervasive mechanism of directing cellular processes. The well-studied and abundant miR-182 has previously been implicated in many aspects of T cell function, DNA repair, and cancer. In this study, we show that miR-182 is the most highly induced miR in B cells undergoing class-switch recombination. To elucidate the requirement of miR-182 in lymphocyte function, we extensively characterized mice with a targeted deletion of Mir182. We show that despite its dramatic induction, loss of miR-182 has minimal impact on B cell development, the ability of B cells to undergo class-switch recombination ex vivo and to undergo Ag-driven affinity maturation in vivo. Furthermore, in striking contrast to knockdown studies that demonstrated the requirement of miR-182 in T cell function, miR-182-deficient mice display no defect in T cell development and activation. Finally, we show that T cell-dependent immune response to experimental Listeria monocytogenes infection is intact in miR-182-deficient mice. We conclude that, contrary to previous studies, miR-182 does not play a significant role in all measured aspects of mouse adaptive immunity. This striking absence of a phenotype highlights the lack of correlation between expression pattern and functional requirement, underscores the limitations of using knockdown approaches to assess miR requirements, and suggests that miR networks may compensate for the chronic loss of specific miRs.


Subject(s)
Adaptive Immunity/immunology , B-Lymphocytes/immunology , Immunoglobulin Class Switching/immunology , MicroRNAs/immunology , Adaptive Immunity/genetics , Animals , B-Lymphocytes/metabolism , Flow Cytometry , Gene Expression/immunology , Host-Pathogen Interactions/immunology , Immunoglobulin Class Switching/genetics , Listeria monocytogenes/immunology , Listeria monocytogenes/physiology , Listeriosis/genetics , Listeriosis/immunology , Listeriosis/microbiology , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , MicroRNAs/metabolism , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
6.
Trends Immunol ; 34(11): 531-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24016547

ABSTRACT

Regulatory T (Treg) cells differentiate from thymocytes or peripheral T cells in response to host and environmental cues, culminating in induction of the transcription factor forkhead box P3 (Foxp3) and the Treg cell-specific epigenome. An intermediate amount of antigen stimulation is required to induce Foxp3 expression by engaging T cell receptor (TCR)-activated [e.g., nuclear factor (NF)-κB] and TCR-inhibited (e.g., Foxo) transcription factors. Furthermore, Treg cell differentiation is associated with attenuated Akt signaling, resulting in enhanced nuclear retention of Foxo1, which is indispensable for Treg cell function. These findings reveal that Treg cell lineage commitment is not only controlled by genetic and epigenetic imprinting, but also modulated by transcriptional programs responding to extracellular signals.


Subject(s)
T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transcription, Genetic/genetics , Transcription, Genetic/immunology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Humans , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/genetics , Signal Transduction/immunology
7.
Nat Immunol ; 14(6): 611-8, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23644504

ABSTRACT

Natural T helper 17 (nTH17) cells are a population of interleukin 17 (IL-17)-producing cells that acquire effector function in the thymus during development. Here we demonstrate that the serine/threonine kinase Akt has a critical role in regulating nTH17 cell development. Although Akt and the downstream mTORC1-ARNT-HIFα axis were required for generation of inducible TH17 (iTH17) cells, nTH17 cells developed independently of mTORC1. In contrast, mTORC2 and inhibition of Foxo proteins were critical for development of nTH17 cells. Moreover, distinct isoforms of Akt controlled the generation of TH17 cell subsets, as deletion of Akt2, but not of Akt1, led to defective generation of iTH17 cells. These findings define mechanisms regulating nTH17 cell development and reveal previously unknown roles of Akt and mTOR in shaping subsets of T cells.


Subject(s)
Proto-Oncogene Proteins c-akt/immunology , Signal Transduction/immunology , TOR Serine-Threonine Kinases/immunology , Th17 Cells/immunology , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/genetics , Aryl Hydrocarbon Receptor Nuclear Translocator/immunology , Aryl Hydrocarbon Receptor Nuclear Translocator/metabolism , Flow Cytometry , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Forkhead Transcription Factors/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunoblotting , Interleukin-17/immunology , Interleukin-17/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Multiprotein Complexes/immunology , Multiprotein Complexes/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism , Th17 Cells/metabolism
8.
Nature ; 491(7425): 554-9, 2012 Nov 22.
Article in English | MEDLINE | ID: mdl-23135404

ABSTRACT

Regulatory T (T(reg)) cells, characterized by expression of the transcription factor forkhead box P3 (Foxp3), maintain immune homeostasis by suppressing self-destructive immune responses. Foxp3 operates as a late-acting differentiation factor controlling T(reg) cell homeostasis and function, whereas the early T(reg)-cell-lineage commitment is regulated by the Akt kinase and the forkhead box O (Foxo) family of transcription factors. However, whether Foxo proteins act beyond the T(reg)-cell-commitment stage to control T(reg) cell homeostasis and function remains largely unexplored. Here we show that Foxo1 is a pivotal regulator of T(reg )cell function. T(reg) cells express high amounts of Foxo1 and display reduced T-cell-receptor-induced Akt activation, Foxo1 phosphorylation and Foxo1 nuclear exclusion. Mice with T(reg)-cell-specific deletion of Foxo1 develop a fatal inflammatory disorder similar in severity to that seen in Foxp3-deficient mice, but without the loss of T(reg) cells. Genome-wide analysis of Foxo1 binding sites reveals ~300 Foxo1-bound target genes, including the pro-inflammatory cytokine Ifng, that do not seem to be directly regulated by Foxp3. These findings show that the evolutionarily ancient Akt-Foxo1 signalling module controls a novel genetic program indispensable for T(reg) cell function.


Subject(s)
Forkhead Transcription Factors/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Transcription, Genetic , Animals , Binding Sites , Cell Nucleus/metabolism , Cell Nucleus/pathology , Female , Forkhead Box Protein O1 , Forkhead Box Protein O3 , Gene Expression Regulation/genetics , Genome/genetics , Immune Tolerance/genetics , Immune Tolerance/immunology , Interferon-gamma/deficiency , Interferon-gamma/genetics , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...