Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1709, 2021 03 17.
Article in English | MEDLINE | ID: mdl-33731718

ABSTRACT

Long-distance extracellular electron transfer has been observed in Gram-negative bacteria and plays roles in both natural and engineering processes. The electron transfer can be mediated by conductive protein appendages (in short unicellular bacteria such as Geobacter species) or by conductive cell envelopes (in filamentous multicellular cable bacteria). Here we show that Lysinibacillus varians GY32, a filamentous unicellular Gram-positive bacterium, is capable of bidirectional extracellular electron transfer. In microbial fuel cells, L. varians can form centimetre-range conductive cellular networks and, when grown on graphite electrodes, the cells can reach a remarkable length of 1.08 mm. Atomic force microscopy and microelectrode analyses suggest that the conductivity is linked to pili-like protein appendages. Our results show that long-distance electron transfer is not limited to Gram-negative bacteria.


Subject(s)
Electron Transport/physiology , Gram-Positive Bacteria/metabolism , Bacillaceae/cytology , Bacillaceae/growth & development , Bacillaceae/metabolism , Bioelectric Energy Sources/microbiology , Electric Conductivity , Electrodes/microbiology , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/ultrastructure , Gram-Positive Bacteria/cytology , Gram-Positive Bacteria/growth & development , Graphite , Microscopy, Atomic Force , Nanowires
2.
Appl Environ Microbiol ; 87(3)2021 01 15.
Article in English | MEDLINE | ID: mdl-33158896

ABSTRACT

Iron-reducing microorganisms (FeRM) play key roles in many natural and engineering processes. Visualizing and isolating FeRM from multispecies samples are essential to understand the in situ location and geochemical role of FeRM. Here, we visualized FeRM by a "turn-on" Fe2+-specific fluorescent chemodosimeter (FSFC) with high sensitivity, selectivity, and stability. This FSFC could selectively identify and locate active FeRM from either pure culture, coculture of different bacteria, or sediment-containing samples. Fluorescent intensity of the FSFC could be used as an indicator of Fe2+ concentration in bacterial cultures. By combining the use of the FSFC with that of a single-cell sorter, we obtained three FSFC-labeled cells from an enriched consortium, and all of them were subsequently shown to be capable of iron reduction; two unlabeled cells were shown to have no iron-reducing capability, further confirming the feasibility of the FSFC.IMPORTANCE Visualization and isolation of FeRM from samples containing multiple species are commonly needed by researchers from different disciplines, such as environmental microbiology, environmental sciences, and geochemistry. However, no available method has been reported. In this study, we provide a method to visualize FeRM and evaluate their activity even at the single-cell level. When this approach is combined with use of a single-cell sorter, FeRM can also be isolated from samples containing multiple species. This method can be used as a powerful tool to uncover the in situ or ex situ role of FeRM and their interactions with ambient microbes or chemicals.


Subject(s)
Bacteria/metabolism , Iron/metabolism , Single-Cell Analysis , Fluorescence , Naphthalimides , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL