Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 13(11)2021 10 27.
Article in English | MEDLINE | ID: mdl-34834974

ABSTRACT

Rhabdoviridae is the most diverse family of the negative, single-stranded RNA viruses, which includes 40 ecologically different genera that infect plants, insects, reptiles, fishes, and mammals, including humans, and birds. To date, only a few bird-related rhabdoviruses among the genera Sunrhavirus, Hapavirus, and Tupavirus have been described and analyzed at the molecular level. In this study, we characterized seven additional and previously unclassified rhabdoviruses, which were isolated from various bird species collected in Africa during the 1960s and 1970s. Based on the analysis of their genome sequences obtained by next generation sequencing, we observed a classical genomic structure, with the presence of the five canonical rhabdovirus genes, i.e., nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G), and polymerase (L). In addition, different additional open reading frames which code putative proteins of unknown function were identified, with the common presence of the C and the SH proteins, within the P gene and between the M and G genes, respectively. Genetic comparisons and phylogenetic analysis demonstrated that these seven bird-related rhabdoviruses could be considered as putative new species within the genus Sunrhavirus, where they clustered into a single group (named Clade III), a companion to two other groups that encompass mainly insect-related viruses. The results of this study shed light on the high diversity of the rhabdoviruses circulating in birds, mainly in Africa. Their close relationship with other insect-related sunrhaviruses raise questions about their potential role and impact as arboviruses that affect bird communities.


Subject(s)
Birds/virology , Genome, Viral , Rhabdoviridae Infections/veterinary , Rhabdoviridae Infections/virology , Rhabdoviridae/classification , Rhabdoviridae/genetics , Africa , Animals , Base Sequence , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Open Reading Frames , Phylogeny , RNA, Viral/genetics , Sequence Analysis , Sequence Analysis, DNA , Viral Proteins/genetics
2.
Viruses ; 13(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466539

ABSTRACT

Bats, the second largest order of mammals worldwide, harbor specific characteristics such as sustaining flight, a special immune system, unique habits, and ecological niches. In addition, they are the natural reservoirs of a variety of emerging or re-emerging zoonotic pathogens. Rhabdoviridae is one of the most diverse families of RNA viruses, which consists of 20 ecologically diverse genera, infecting plants, mammals, birds, reptiles, and fish. To date, three bat-related genera are described, named Lyssavirus, Vesiculovirus, and Ledantevirus. However, the prevalence and the distribution of these bat-related rhabdoviruses remain largely unknown, especially in China. To fill this gap, we performed a large molecular retrospective study based on the real-time reverse transcription polymerase chain reaction (RT-qPCR) detection of lyssavirus in bat samples (1044 brain and 3532 saliva samples, from 63 different bat species) originating from 21 provinces of China during 2006-2018. None of them were positive for lyssavirus, but six bat brains (0.6%) of Rhinolophus bat species, originating from Hubei and Hainan provinces, were positive for vesiculoviruses or ledanteviruses. Based on complete genomes, these viruses were phylogenetically classified into three putative new species, tentatively named Yinshui bat virus (YSBV), Taiyi bat virus (TYBV), and Qiongzhong bat virus (QZBV). These results indicate the novel rhabdoviruses circulated in different Chinese bat populations.


Subject(s)
Chiroptera/virology , Genome, Viral , Phylogeny , Rhabdoviridae Infections/veterinary , Rhabdoviridae/classification , Animals , Brain/virology , China/epidemiology , Retrospective Studies , Rhabdoviridae/isolation & purification , Rhabdoviridae Infections/epidemiology , Rhabdoviridae Infections/virology , Saliva/virology , Vesiculovirus/classification
3.
Virology ; 551: 84-92, 2020 12.
Article in English | MEDLINE | ID: mdl-32859395

ABSTRACT

Mammalian orthoreovirus (MRV) infections are ubiquitous in mammals. Increasing evidence suggests that some MRVs can cause severe respiratory disease and encephalitis in humans and other animals. Previously, we isolated six bat MRV strains. However, the pathogenicity of these bat viruses remains unclear. In this study, we investigated the host range and pathogenicity of 3 bat MRV strains (WIV2, 3 and 7) which represent three serotypes. Our results showed that all of them can infect cell lines from different mammalian species and displayed different replication efficiency. The BALB/c mice infected by bat MRVs showed clinical symptoms with systematic infection especially in lung and intestines. Obvious tissue damage were found in all infected lungs. One of the strains, WIV7, showed higher replication efficiency in vitro and vivo and more severe pathogenesis in mice. Our results provide new evidence showing potential pathogenicity of bat MRVs in animals and probable risk in humans.


Subject(s)
Host Specificity , Orthoreovirus, Mammalian/pathogenicity , Pneumonia, Viral/virology , Reoviridae Infections/virology , Animals , Cell Line , Chiroptera , Female , Humans , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Serogroup
4.
Virol Sin ; 33(1): 87-95, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29500692

ABSTRACT

Previous studies indicated that fruit bats carry two betacoronaviruses, BatCoV HKU9 and BatCoV GCCDC1. To investigate the epidemiology and genetic diversity of these coronaviruses, we conducted a longitudinal surveillance in fruit bats in Yunnan province, China during 2009-2016. A total of 59 (10.63%) bat samples were positive for the two betacorona-viruses, 46 (8.29%) for HKU9 and 13 (2.34%) for GCCDC1, or closely related viruses. We identified a novel HKU9 strain, tentatively designated as BatCoV HKU9-2202, by sequencing the full-length genome. The BatCoV HKU9-2202 shared 83% nucleotide identity with other BatCoV HKU9 stains based on whole genome sequences. The most divergent region is in the spike protein, which only shares 68% amino acid identity with BatCoV HKU9. Quantitative PCR revealed that the intestine was the primary infection organ of BatCoV HKU9 and GCCDC1, but some HKU9 was also detected in the heart, kidney, and lung tissues of bats. This study highlights the importance of virus surveillance in natural reservoirs and emphasizes the need for preparedness against the potential spill-over of these viruses to local residents living near bat caves.


Subject(s)
Betacoronavirus/isolation & purification , Chiroptera/virology , Coronavirus Infections/veterinary , Genetic Variation , Animal Structures/virology , Animals , Betacoronavirus/classification , Betacoronavirus/genetics , China/epidemiology , Coronavirus Infections/virology , Disease Reservoirs , Epidemiological Monitoring , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Whole Genome Sequencing
5.
PLoS Pathog ; 13(11): e1006698, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29190287

ABSTRACT

A large number of SARS-related coronaviruses (SARSr-CoV) have been detected in horseshoe bats since 2005 in different areas of China. However, these bat SARSr-CoVs show sequence differences from SARS coronavirus (SARS-CoV) in different genes (S, ORF8, ORF3, etc) and are considered unlikely to represent the direct progenitor of SARS-CoV. Herein, we report the findings of our 5-year surveillance of SARSr-CoVs in a cave inhabited by multiple species of horseshoe bats in Yunnan Province, China. The full-length genomes of 11 newly discovered SARSr-CoV strains, together with our previous findings, reveals that the SARSr-CoVs circulating in this single location are highly diverse in the S gene, ORF3 and ORF8. Importantly, strains with high genetic similarity to SARS-CoV in the hypervariable N-terminal domain (NTD) and receptor-binding domain (RBD) of the S1 gene, the ORF3 and ORF8 region, respectively, were all discovered in this cave. In addition, we report the first discovery of bat SARSr-CoVs highly similar to human SARS-CoV in ORF3b and in the split ORF8a and 8b. Moreover, SARSr-CoV strains from this cave were more closely related to SARS-CoV in the non-structural protein genes ORF1a and 1b compared with those detected elsewhere. Recombination analysis shows evidence of frequent recombination events within the S gene and around the ORF8 between these SARSr-CoVs. We hypothesize that the direct progenitor of SARS-CoV may have originated after sequential recombination events between the precursors of these SARSr-CoVs. Cell entry studies demonstrated that three newly identified SARSr-CoVs with different S protein sequences are all able to use human ACE2 as the receptor, further exhibiting the close relationship between strains in this cave and SARS-CoV. This work provides new insights into the origin and evolution of SARS-CoV and highlights the necessity of preparedness for future emergence of SARS-like diseases.


Subject(s)
Chiroptera/virology , Gene Pool , Genome, Viral/genetics , Severe Acute Respiratory Syndrome/virology , Severe acute respiratory syndrome-related coronavirus/genetics , Amino Acid Sequence/genetics , Animals , Coronavirus Infections/virology , Evolution, Molecular , Humans , Recombination, Genetic/genetics
6.
Nanoscale Res Lett ; 6(1): 139, 2011 Feb 14.
Article in English | MEDLINE | ID: mdl-21711656

ABSTRACT

A delta-doped quantum well with additional modulation doping may have potential applications. Utilizing such a hybrid system, it is possible to experimentally realize an extremely high two-dimensional electron gas (2DEG) density without suffering inter-electronic-subband scattering. In this article, the authors report on transport measurements on a delta-doped quantum well system with extra modulation doping. We have observed a 0-10 direct insulator-quantum Hall (I-QH) transition where the numbers 0 and 10 correspond to the insulator and Landau level filling factor ν = 10 QH state, respectively. In situ titled-magnetic field measurements reveal that the observed direct I-QH transition depends on the magnetic component perpendicular to the quantum well, and the electron system within this structure is 2D in nature. Furthermore, transport measurements on the 2DEG of this study show that carrier density, resistance and mobility are approximately temperature (T)-independent over a wide range of T. Such results could be an advantage for applications in T-insensitive devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...