Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; 175: 105956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604261

ABSTRACT

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism, and abnormally high expression of ACLY occurs in many diseases, including cancers, dyslipidemia and cardiovascular diseases. ACLY inhibitors are prospective treatments for these diseases. However, the scaffolds of ACLY inhibitors are insufficient with weak activity. The discovery of inhibitors with structural novelty and high activity continues to be a research hotpot. Acanthopanax senticosus (Rupr. & Maxim.) Harms is used for cardiovascular disease treatment, from which no ACLY inhibitors have ever been found. In this work, we discovered three novel ACLY inhibitors, and the most potent one was isochlorogenic acid C (ICC) with an IC50 value of 0.14 ± 0.04 µM. We found dicaffeoylquinic acids with ortho-dihydroxyphenyl groups were important features for inhibition by studying ten phenolic acids. We further investigated interactions between the highly active compound ICC and ACLY. Thermal shift assay revealed that ICC could directly bind to ACLY and improve its stability in the heating process. Enzymatic kinetic studies indicated ICC was a noncompetitive inhibitor of ACLY. Our work discovered novel ACLY inhibitors, provided valuable structure-activity patterns and deepened knowledge on the interactions between this targe tand its inhibitors.


Subject(s)
ATP Citrate (pro-S)-Lyase , Eleutherococcus , Eleutherococcus/chemistry , Molecular Structure , ATP Citrate (pro-S)-Lyase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/chemistry , Chlorogenic Acid/pharmacology , Chlorogenic Acid/isolation & purification , Chlorogenic Acid/chemistry , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Phytochemicals/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/pharmacology , Quinic Acid/isolation & purification , Quinic Acid/chemistry , Hydroxybenzoates/pharmacology , Hydroxybenzoates/isolation & purification , Hydroxybenzoates/chemistry , Structure-Activity Relationship
2.
Int J Mol Sci ; 23(18)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36142671

ABSTRACT

ATP citrate lyase (ACLY) is a key enzyme in glucolipid metabolism and its aberrantly high expression is closely associated with various cancers, hyperlipemia and atherosclerotic cardiovascular diseases. Prospects of ACLY inhibitors as treatments of these diseases are excellent. To date, flavonoids have not been extensively reported as ACLY inhibitors. In our study, 138 flavonoids were screened and 21 of them were subjected to concentration-response curves. A remarkable structure-activity relationship (SAR) trend was found: ortho-dihydroxyphenyl and a conjugated system maintained by a pyrone ring were critical for inhibitory activity. Among these flavonoids, herbacetin had a typical structure and showed a non-aggregated state in solution and a high inhibition potency (IC50 = 0.50 ± 0.08 µM), and therefore was selected as a representative for the ligand-protein interaction study. In thermal shift assays, herbacetin improved the thermal stability of ACLY, suggesting a direct interaction with ACLY. Kinetic studies determined that herbacetin was a noncompetitive inhibitor of ACLY, as illustrated by molecular docking and dynamics simulation. Together, this work demonstrated flavonoids as novel and potent ACLY inhibitors with a remarkable SAR trend, which may help design high-potency ACLY inhibitors. In-depth studies of herbacetin deepened our understanding of the interactions between flavonoids and ACLY.


Subject(s)
ATP Citrate (pro-S)-Lyase , Pyrones , ATP Citrate (pro-S)-Lyase/metabolism , Flavonoids/pharmacology , Kinetics , Ligands , Molecular Docking Simulation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL