Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chin J Nat Med ; 16(5): 339-346, 2018 May.
Article in English | MEDLINE | ID: mdl-29860994

ABSTRACT

Oleanolic acid (OA) is a pentacyclic triterpenoid compound extracted from olea europaeal, a traditional Chinese medicine herb. OA has been used in the clinic as a hepatoprotective medicine in China since 1970s. In our previous study, we observed that OA could ameliorate hyperlipidemia in animal models. In the present study, we conducted a small-scale clinical trial to evaluate the hypolipidemia effect of OA in hyperlipidemic patients. Hyperlipidemic patients were administrated with OA for four weeks (4 tablets once, three times a day). The blood samples of the patients were collected before and after OA treatment. The biological parameters were measured. Furthermore, three patients' blood samples were studied with DNA microarray. After OA administration, the TC, TG, and HDLC levels in serum decreased significantly. DNA microarray analysis results showed that the expressions of 21 mRNAs were significantly changed after OA treatment. Bioinformatics analysis showed 17 mRNAs were up-regulated and 4 mRNAs were down-regulated significantly after OA treatment. Five mRNAs (CACNA1B, FCN, STEAP3, AMPH, and NR6A1) were selected to validate the expression levels by qRT-PCR. Therefore, OA administration differentially regulated the expression of genes involved in lipid metabolism. The data showed a clinical evidence that OA could improve hyperlipidemia and also unveiled a new insight into the molecular mechanisms underlying the pharmacological effect of OA on hyperlipidemia.


Subject(s)
Gene Expression Regulation/drug effects , Hyperlipidemias/drug therapy , Lipid Metabolism/drug effects , Oleanolic Acid/pharmacology , Oleanolic Acid/therapeutic use , China , Computational Biology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Female , Gene Expression Profiling , Humans , Hyperlipidemias/blood , Hyperlipidemias/genetics , Hyperlipidemias/metabolism , Male , Middle Aged , RNA, Messenger/genetics , Treatment Outcome
2.
Acta Pharmacol Sin ; 39(8): 1284-1293, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29345253

ABSTRACT

3-Acetyl-oleanolic acid (3Ac-OA) is a derivative of oleanolic acid (OA), which has shown therapeutic beneficial effects on diabetes and metabolic syndrome. In this study we investigated whether 3Ac-OA exerted beneficial effect on non-alcoholic fatty liver disease (NAFLD) in rats and its potential underlying mechanisms. Treatment with 3Ac-OA (1-100 µmol/L) dose-dependently decreased the intracellular levels of total cholesterol (TC) and triglyceride (TG) in FFA-treated primary rat hepatocytes and human HepG2 cell lines in vitro. Furthermore, oil red staining studies showed that 3Ac-OA caused dose-dependent decrease in the number of lipid droplets in FFA-treated primary rat hepatocytes. SD rats were fed a high fat diet (HFD) for 6 weeks and subsequently treated with 3Ac-OA (60, 30, 15 mg·kg-1·d-1) for 4 weeks. 3Ac-OA administration significantly decreased the body weight, liver weight and serum TC, TG, LDL-C levels in HFD rats. Furthermore, 3AcOA administration ameliorated lipid accumulation and cell apoptosis in the liver of HFD rats. Using adipokine array analyses, we found that the levels of 11 adipokines (HGF, ICAM, IGF-1, IGFBP-3, IGFBP-5, IGFBP-6, lipocalin-2, MCP-1, M-CSF, Pref-1 and RAGE) were increased by more than twofold in the serum of 3Ac-OA-treated rats, whereas ICAM, IGF-1 and lipocalin-2 had levels increased by more than 20-fold. Moreover, 3Ac-OA administration significantly increased the expression of glucose transporter type 2 (GLUT-2) and low-density lipoprotein receptor (LDLR), as well as the phosphorylation of AMP-activated protein kinase (AMPK), protein kinase B (AKT) and glycogen synthase kinase 3ß (GSK-3ß) in the liver tissues of HFD rats. In conclusion, this study demonstrates that 3Ac-OA exerts a protective effect against hyperlipidemia in NAFLD rats through AMPK-related pathways.


Subject(s)
Hyperlipidemias/prevention & control , Non-alcoholic Fatty Liver Disease/prevention & control , Signal Transduction/drug effects , Triterpenes/therapeutic use , Adipokines/metabolism , Animals , Apoptosis/drug effects , Body Weight/drug effects , Diet, High-Fat/adverse effects , Fatty Acids, Nonesterified/adverse effects , Hep G2 Cells , Hepatocytes/drug effects , Humans , Lipid Droplets/drug effects , Male , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...