Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Small ; 20(8): e2305765, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37821399

ABSTRACT

Solid proton electrolytes play a crucial role in various electrochemical energy storage and conversion devices. However, the development of fast proton conducting solid proton electrolytes at ambient conditions remains a significant challenge. In this study, a novel acidified nitrogen self-doped porous carbon material is presented that demonstrates exceptional superprotonic conduction for applications in solid-state proton battery. The material, designated as MSA@ZIF-8-C, is synthesized through the acidification of nitrogen-doped porous carbon, specifically by integrating methanesulfonic acid (MSA) into zeolitic imidazolate framework-derived nitrogen self-doped porous carbons (ZIF-8-C). This study reveals that MSA@ZIF-8-C achieves a record-high proton conductivity beyond 10-2  S cm-1 at ambient condition, along with good long-term stability, positioning it as a cutting-edge alternative solid proton electrolyte to the default aqueous H2 SO4 electrolyte in proton batteries.

2.
Chem Commun (Camb) ; 59(54): 8436-8439, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37335573

ABSTRACT

Herein, we demonstrated the unique advantage of a mechanochemical reaction to prepare a salt with hard and soft acid and base ions concurrently by solution synthesis owing to the soft acid preferring to combine with the soft base and vice versa. We prepared Bu4N1-xLixMnxPb1-xI3 (x = 0.011-0.14) by mechanochemical synthesis. The doping induced a structural phase transition at ∼342 K and much enhancement of ionic conduction above 342 K for all co-doped hybrids regarding Bu4NPbI3 because of the voids around the Mn2+/Li+ ions by doping.

3.
ACS Appl Mater Interfaces ; 15(2): 2933-2939, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36602325

ABSTRACT

Zirconium-based metal-organic frameworks (Zr-MOFs) have been demonstrated as potent catalysts for the hydrolytic detoxification of organophosphorus nerve agents and their simulants. However, the practical implementation of these Zr-MOFs is limited by the poor processability of their powdered form and the necessity of water media buffered by a volatile liquid base in the catalytic reaction. Herein, we demonstrate the efficient solid-state hydrolysis of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) catalyzed by Zr-MOF-based mixed matrix membranes. The mixed matrix membranes were fabricated by incorporating MOF-808 into the blending matrix of poly(vinylidene fluoride) (PVDF), poly(vinylpyrrolidone) (PVP), and imidazole (Im), in which MOF-808 provides highly active catalytic sites, the hydrophilic PVP helps to retain water for promoting the hydrolytic reaction, and Im serves as a base for catalytic site regeneration. Impressively, the mixed matrix membranes displayed excellent catalytic performance for the solid-state hydrolysis of DMNP under high humidity, representing a significant step toward the practical application of Zr-MOFs in chemical protective layers against nerve agents.


Subject(s)
Metal-Organic Frameworks , Nerve Agents , Polymers , Organophosphates , Water
4.
Inorg Chem ; 61(49): 20057-20063, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36455074

ABSTRACT

The development of proton conductors capable of working at above 100 °C is of great significance for proton exchange membrane electrolysis cells (PEMECs) and proton exchange membrane fuel cells (PEMFCs) but remains to be an enormous challenge to date. In this work, we demonstrate for the first time that the N-doped porous carbon derived from metal-organic frameworks (MOFs) with great superiority can be exploited for high-performing proton conductors at above 100 °C. Through the pyrolysis of ZIF-8, the N-doped porous carbon (ZIF-8-C) featuring high chemical resistance to Fenton's reagent was readily prepared and then served as a robust host to accommodate H3PO4 molecules for proton transport. Upon impregnation with H3PO4, the resulting PA@ZIF-8-C exhibits low water swelling and high proton conduction of over 10-2 S cm-1 at a temperature above 100 °C, which is superior to many reported proton conductors. This work provides a new approach for the design of high-performing proton conductors at above 100 °C.


Subject(s)
Metal-Organic Frameworks , Carbon , Protons , Porosity , Cell Membrane
5.
World J Clin Cases ; 10(11): 3490-3495, 2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35611211

ABSTRACT

BACKGROUND: Cladosporium and Corynespora cassiicola (C. cassiicola) infections rarely occur in humans. Mutations in human caspase recruitment domain protein 9 (CARD9) are reported to be associated with fungal diseases. Pulmonary Cladosporium infection coexisting with subcutaneous C. cassiicola infection in a patient with a CARD9 mutation has not been reported in the literature. CASE SUMMARY: A 68-year-old male patient was hospitalized for hypertrophic erythema and deep ulcers on the left upper extremity. He was diagnosed with pneumonia caused by Cladosporium, as identified through bronchoalveolar lavage fluid analysis, and deep dermatophytosis caused by C. cassiicola, as identified through morphological characteristics of the wound secretion culture. He underwent antifungal therapy (voriconazole) and recovered successfully. He carried two mutations in CARD9 (chr9:139266425 and chr9:139262240) and was therefore susceptible to fungal infections. CONCLUSION: This case study is the first to report the coexistence of pulmonary Cladosporium infection and subcutaneous C. cassiicola infection in a patient with CARD9 mutation. Our findings will be helpful in enriching the phenotypic spectrum of fungal infections underlying CARD9 deficiency.

6.
Nat Biomed Eng ; 6(3): 267-275, 2022 03.
Article in English | MEDLINE | ID: mdl-35301449

ABSTRACT

Serum biomarkers are often insufficiently sensitive or specific to facilitate cancer screening or diagnostic testing. In ovarian cancer, the few established serum biomarkers are highly specific, yet insufficiently sensitive to detect early-stage disease and to impact the mortality rates of patients with this cancer. Here we show that a 'disease fingerprint' acquired via machine learning from the spectra of near-infrared fluorescence emissions of an array of carbon nanotubes functionalized with quantum defects detects high-grade serous ovarian carcinoma in serum samples from symptomatic individuals with 87% sensitivity at 98% specificity (compared with 84% sensitivity at 98% specificity for the current best clinical screening test, which uses measurements of cancer antigen 125 and transvaginal ultrasonography). We used 269 serum samples to train and validate several machine-learning classifiers for the discrimination of patients with ovarian cancer from those with other diseases and from healthy individuals. The predictive values of the best classifier could not be attained via known protein biomarkers, suggesting that the array of nanotube sensors responds to unidentified serum biomarkers.


Subject(s)
Nanotubes, Carbon , Ovarian Neoplasms , Biomarkers, Tumor , Early Detection of Cancer , Female , Humans , Machine Learning , Ovarian Neoplasms/diagnostic imaging
7.
ACS Appl Mater Interfaces ; 13(50): 60084-60091, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34889608

ABSTRACT

Crystalline porous materials, such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been demonstrated to be versatile material platforms for the development of solid proton conductors. However, most crystalline porous proton conductors suffer from decreasing proton conductivity with increasing temperature due to releasing water molecules, and this disadvantage severely restricts their practical application in electrochemical devices. In this work, for the first time, hydrophilic carbon dots (CDs) were utilized to hybridize with high proton conductivity MOF-802, which is a model of MOF proton conductors, aiming to improve its water-retention capacity and thus enhance proton conduction. The resultant CDs@MOF-802 exhibits impregnable proton conduction with increasing temperature, and the proton conductivity reaches 10-1 S cm-1, much superior to that of MOF-802, making CDs@MOF-802 one of the most efficient MOF proton conductors reported so far. This study provides a new strategy to improve the water-retention capacity of porous proton conductors and further realize excellent proton conduction.

8.
ACS Appl Mater Interfaces ; 13(31): 37231-37238, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34324287

ABSTRACT

Metal-organic frameworks (MOFs) provided a versatile platform for the development of new solid protonic electrolytes but faced great challenges regarding their low chemical stability and poor moisture retention capacity. Herein, we presented the proton-conducting study for zirconium-based MOF-802, revealing that MOF-802 possessed excellent features of extra aqueous and acidic stabilities and room-temperature superprotonic conduction with a proton conductivity of 1.05 × 10-2 S cm-1 at 288 K under 98% relative humidity (RH). Unfortunately, due to the liberation of water molecules from pores/channels, the proton conductivity of MOF-802 dropped significantly at the temperature above 318 K. To solve this issue, for the first time, MOF-802 was hybridized with poly(vinyl alcohol) (PVA) to form MOF-802@PVA hydrogel composites, where the moisture retention capacity of MOF-802 was greatly improved, giving the high room-temperature proton conductivity over 10-3 S cm-1 under ambient humidity. This work paves a new way to improve the moisture retention capacity and proton-conducting performances of porous proton conductors.

9.
Dalton Trans ; 50(23): 8070-8075, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34018519

ABSTRACT

Open-framework zinc phosphate (NMe4)(ZnP2O8H3) undergoes irreversible phase transformation. Structural transformation with α (NMe4·Zn[HPO4][H2PO4] the low-temperature phase) and ß (NMe4·ZnH3[PO4]2 the high-temperature phase) (Tc = 149 °C) and conduction properties were investigated by single-crystal X-ray diffraction, differential scanning calorimetry, and alternating current (ac) impedance. The open-framework material was sensitive to humidity and ß proton conductivity was higher than 10-2 S cm-1 at room temperature and 98% relative humidity (RH). Given that the high proton conductivity of the open-framework material can compete with that of many advanced proton conductors based on metal-organic frameworks (MOFs), it has broad application prospects in various electrochemical devices.

10.
ACS Catal ; 11(3): 1424-1429, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33614195

ABSTRACT

Metal-organic frameworks (MOFs) are excellent catalytic materials for the hydrolytic degradation of nerve agents and their simulants. However, most of the MOF-based hydrolysis catalysts to date are reliant on liquid water media buffered by a volatile liquid base. To overcome this practical limitation, we developed a simple and feasible strategy to synthesize MOF composites that structurally mimic phosphotriesterase's active site as well as its ligated histidine residues. By incorporating imidazole and its derivative into the pores of MOF-808, the obtained MOF composites achieved rapid degradation of a nerve agent simulant (dimethyl-4-nitrophenyl phosphate, DMNP) in pure water as well as in a humid environment without liquid base. Remarkably, one of the composites Im@MOF-808 displayed the highest catalytic activity for DMNP hydrolysis in unbuffered aqueous solutions among all reported MOF-based catalysts. Furthermore, solid-phase catalysis showed that Im@MOF-808 can also rapidly hydrolyze DMNP under high-humidity conditions without bulk water or external bases. This work provides a viable solution toward the implementation of MOF materials into protective equipment for practical nerve agent detoxification.

11.
Inorg Chem ; 59(10): 7283-7289, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32374989

ABSTRACT

Solid proton conductors are broadly applicable to various electrochemical devices; therefore, it is highly desirable to develop robust materials with high proton conductivity under both anhydrous and humid environments within a wide temperature range. In this work, we investigated the proton conducting properties of a 3D open-framework chalcogenidometalate hybrid, [CH3NH3]2[H3O]Ag5Sn4Se12·C2H5OH (1), which exhibited both anhydrous and water-assisted proton conduction. Importantly, the excellent thermal and chemical stabilities of hybrid 1 are superior to many MOF-based proton conducting materials. This present study proved to be a considerable advance based on open-framework chalcogenidometalates in the design of robust solid proton conducting materials that are capable of operating under humid and anhydrous environments in a wide temperature range.

12.
Inorg Chem ; 58(21): 14693-14700, 2019 Nov 04.
Article in English | MEDLINE | ID: mdl-31646865

ABSTRACT

In this work, we present a new strategy toward the design and preparation of a metal-organic framework- or porous coordination polymer-based superior proton conductor. We chose a robust metal-organic framework, ZIF-8, as the host and a flexible aliphatic alkylpolyamine, tetraethylenepentamine (TEPA), as the guest, and we successfully prepared an encapsulation compound TEPA@ZIF-8 via the facile insertion of TEPA into the pores of ZIF-8, which was characterized by microanalysis, thermogravimetric analysis, IR spectroscopy, N2, water vapor adsorption-desorption, and other methods. Each cage in ZIF-8 is occupied by ∼1.44 TEPA molecules, and the introduced TEPA further adsorbs H2O and CO2 from air to offer a superior proton conductor, TEPA@ZIF-8-H2CO3, with σ = 2.08 × 10-3 S cm-1 at 293 K and 99% relative humidity, and excellent proton conduction durability. Regarding ZIF-8, the proton conductivity of TEPA@ZIF-8-H2CO3 increases by 3 orders of magnitude at the same condition, and the activation energy decreases by 0.91 eV. Remarkably, TEPA@ZIF-8-H2CO3 also shows promising features for the detection of aqueous ammonia. This work provides more opportunities to achieve superior protonic conducting materials and suggests that MOF-based proton conductors possess great potential for applications in ammonia sensing.

13.
ACS Nano ; 13(7): 8417-8424, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31268668

ABSTRACT

Organic color center-tailored semiconducting single-walled carbon nanotubes are a rising family of synthetic quantum emitters that display bright defect photoluminescence molecularly tunable for imaging, sensing, and quantum information processing. A major advance in this area would be the development of a high-yield synthetic route that is capable of producing these materials well exceeding the current µg/mL scale. Here, we demonstrate that adding a chlorosulfonic acid solution of raw carbon nanotubes, sodium nitrite, and an aniline derivative into water readily leads to the synthesis of organic color center-tailored nanotubes. This unexpectedly simple one-pot reaction is highly scalable (yielding hundreds of milligrams of materials in a single run), efficient (reaction completes in seconds), and versatile (achieved the synthesis of organic color centers previously unattainable). The implanted organic color centers can be easily tailored by choosing from the more than 40 aniline derivatives that are commercially available, including many fluoroaniline and aminobenzoic acid derivatives, and that are difficult to convert into diazonium salts. We found this chemistry works for all the nanotube chiralities investigated. The synthesized materials are neat solids that can be directly dispersed in either water or an organic solvent by a surfactant or polymer depending on the specific application. The nanotube products can also be further sorted into single chirality-enriched fractions with defect-specific photoluminescence that is tunable over ∼1100 to ∼1550 nm. This one-pot chemistry thus provides a highly scalable synthesis of organic color centers for many potential applications that require large quantities of materials.

14.
ACS Appl Mater Interfaces ; 11(9): 9164-9171, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30747511

ABSTRACT

Metal-organic frameworks (MOFs), as newly emerging materials, show compelling intrinsic structural features, e.g., the highly crystalline nature and designable and tunable porosity, as well as tailorable functionality, rendering them suitable for proton-conducting materials. The proton conduction of MOF is significantly improved using the postsynthesis or encapsulation strategy. In this work, the MOF-based proton-conducting material Im@MOF-808 has been prepared by incorporating the imidazole molecules into the pores of proton-conducting MOF-808. Compared with MOF-808, Im@MOF-808 not only possesses higher proton conductivity of 3.45 × 10-2 S cm-1 at 338 K and 99% RH, superior to that of any imidazole-encapsulated proton-conducting materials reported to date, but also good durable and stable proton conduction. Moreover, the thermal stability of H-bond networks is much improved owing to the water molecules partially replaced by higher boiling point imidazole molecules. Additionally, it is further discussed for the possible mechanism of imidazole encapsulation into the pores of MOF-808 to enhance proton conduction.

15.
ACS Appl Mater Interfaces ; 10(34): 28656-28663, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30070818

ABSTRACT

Proton-exchange membranes (PEMs), characterized by selectively permitting the transfer of protons and acting as a separator in electrochemical devices, have attracted immense attention. The composite membrane, fabricated from organic polymer matrix and high proton-conducting metal-organic framework (MOF), integrates the excellent physical and chemical performances of the polymer and MOF, achieving collective properties for good-performance PEMs. In this study, we demonstrate that MOF-801 shows remarkable proton conductance with σ = 1.88 × 10-3 S cm-1 at 298 K and 98% relative humidity (RH), specifically, together with extra stability to hydrochloric acid or diluting sodium hydroxide aqueous solutions and boiling water. Furthermore, the composite membranes (denoted MOF-801@PP- X, where X represents the mass percentage of MOF-801 in the membrane) have been fabricated using the sub-micrometer-scale crystalline particles of MOF-801 and blending the poly(vinylidene fluoride)-poly(vinylpyrrolidone) matrix, and these PEMs display high proton conductivity, with σ = 1.84 × 10-3 S cm-1 at 325 K 98% RH. A composite membrane as PEM was assembled into H2/O2 fuel cell for tests, indicating that these membrane materials have vast potential for PEM application on electrochemical devices.

16.
Neural Regen Res ; 13(5): 915-922, 2018 May.
Article in English | MEDLINE | ID: mdl-29863023

ABSTRACT

Large-scale epidemiological studies have found that hyperhomocysteinemia is a powerful, independent risk factor for Alzheimer's disease. Trillium tschonoskii maxim is a traditional Chinese medicine that is used to promote memory. However, scientific understanding of its mechanism of action is limited. This report studied the potential neuroprotective effects of Trillium tschonoskii maxim extract against homocysteine-induced cognitive deficits. Rats were intravenously injected with homocysteine (400 µg/kg) for 14 days to induce a model of Alzheimer's disease. These rats were then intragastrically treated with Trillium tschonoskii maxim extract (0.125 or 0.25 g/kg) for 7 consecutive days. Open field test and Morris water maze test were conducted to measure spontaneous activity and learning and memory abilities. Western blot assay was used to detect the levels of Tau protein and other factors involved in Tau phosphorylation in the hippocampus. Immunohistochemical staining was used to examine Tau protein in the hippocampus. Golgi staining was applied to measure hippocampal dendritic spines. Our results demonstrated that homocysteine produced learning and memory deficits and increased levels of Tau phosphorylation, and diminished the activity of catalytic protein phosphatase 2A. The total number of hippocampal dendritic spines was also decreased. Trillium tschonoskii maxim extract treatment reversed the homocysteine-induced changes. The above results suggest that Trillium tschonoskii maxim extract can lessen homocysteine-induced abnormal Tau phosphorylation and improve cognitive deterioration such as that present in Alzheimer's disease.

17.
Dalton Trans ; 47(40): 14233-14240, 2018 Oct 16.
Article in English | MEDLINE | ID: mdl-29774905

ABSTRACT

Two pairs of MOF-based hybrid enantiomorphs, [NH2(CH3)2]3[Pb2X3(BDC)2] (H2BDC = 1,4-benzenedicarboxylic acid, X = Br or I), have been synthesized using the solvothermal reaction and then manually separated, which are labeled as 1a/1b (X = Br) and 2a/2b (X = I). The isomorphic 1a and 2a crystallize in tetragonal space group P43212, and the isomorphic 1b and 2b in the enantiomorphic space group P41212. Twofold interpenetrated three-dimensional (3-D) networks were built from two sets of equivalent I1O2 type hybrid inorganic-organic frameworks in 1a/1b and 2a/2b. Each I1O2 type hybrid inorganic-organic framework constructs by the inorganic pentagonal bipyramid-shape PbX3O4 (X = Br or I) polyhedral chains along the c-axis, which are further connected though bridged BDC2- ligands in the directions perpendicular to the c-axis. Hybrids 1a/1b and 2a/2b have been characterized by elemental analysis (C, H and N elements), thermogravimetric and powder X-ray diffraction techniques, and UV-visible absorption spectroscopy in the solid state. These hybrids show dual emissions at ambient conditions, which arise from the π-π* electron transition within the aromatic rings in the BDC2- ligands and the electron transition in the inorganic polyhedral semiconducting chains, as well as thermochromic luminescence behavior from 10 to 300 K owing to two emission bands displaying different responses to the temperature change.

18.
ACS Appl Mater Interfaces ; 10(3): 2619-2627, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29286233

ABSTRACT

Proton-conducting materials have attracted increasing interest because of the promising technological applications as key components in various electrochemical devices. It is of great significance for technique application to seek superior proton-conducting materials, operating under both anhydrous and humidified conditions in a wide temperature range. Herein we demonstrate the proton conductance of an open-framework chalcogenide, (CH3NH3)2Ag4Sn3S8 (1), and the postsynthesis product 2 achieved by doping hydrochloric acid into 1. Hybrid 2 displays both intrinsic anhydrous and water-assisted high proton conductance, with σ = 1.87 × 10-4 S·cm-1 at 463 K under N2 atmosphere and 1.14 × 10-3 S·cm-1 at 340 K and 99% relative humidity, and these conductivities are comparable to that in the efficient metal-organic frameworks-based proton-conducting materials. Moreover, hybrid 2 shows excellent thermal stability and long-term stability of proton conduction.

19.
Inorg Chem ; 56(22): 13998-14004, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29095601

ABSTRACT

Switchable conducting or dielectric materials, as the key component, show important technological applications in modern electrical and electronic devices, including data communication, phase shifters, varactors, and rewritable optical data storage. To explore new types of switchable conducting or dielectric materials could significantly accelerate the development of efficient electrical and electronic devices. Herein we present the first example of switchable conducting and dielectric material, which is based on an open-framework phosphate, (C2N2H10)0.5CoPO4. A reversible isostructural phase transition occurs at ∼348 K in this open-framework phosphate, to give both dielectrics and conductance anomaly around the critical temperature of phase transition. This study will provide a roadmap for searching new switchable conducting or dielectric materials as well as new applications of open-framework phosphates.

20.
Dalton Trans ; 46(24): 7904-7910, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28598485

ABSTRACT

Proton conducting materials have important technological applications as key components in electrochemical devices, including fuel cells, electrochemical sensors, electrochemical reactors and electrochromic displays. And the exploration of novel proton conducting materials is significant for the development of efficient electrochemical devices. In this study, we have investigated the proton conductance of an open-framework manganese(ii) phosphite, (NH4)0.59(H3O)1.41Mn5(HPO3)6 (1). The open-framework manganese(ii) phosphate shows superior water-stability and excellent thermal stability. There was intrinsic water-assisted proton conductivity with σ = 3.94 × 10-4 S cm-1 at 328 K and 98% RH. Furthermore, composite membranes have further been fabricated using polyvinylidene fluoride (PVDF) and 1, labeled as 1@PVDF-X, where the symbol X represents the mass percentage of 1 (as X%) in the composite membrane and X = 10-55%. The composite membranes display good mechanical performance and durability for practical applications, and the proton conductivity of 1@PVDF-55 reaches 3.32 × 10-5 S cm-1 in deionized water at 336 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...