Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
J Adv Res ; 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37739123

ABSTRACT

INTRODUCTION: Peanut is susceptible to infection of Aspergillus fungi and conducive to aflatoxin contamination, hence developing aflatoxin-resistant variety is highly meaningful. Identifying functional genes or loci conferring aflatoxin resistance and molecular diagnostic marker are crucial for peanut breeding. OBJECTIVES: This work aims to (1) identify candidate gene for aflatoxin production resistance, (2) reveal the related resistance mechanism, and (3) develop diagnostic marker for resistance breeding program. METHODS: Resistance to aflatoxin production in a recombined inbred line (RIL) population derived from a high-yielding variety Xuhua13 crossed with an aflatoxin-resistant genotype Zhonghua 6 was evaluated under artificial inoculation for three consecutive years. Both genetic linkage analysis and QTL-seq were conducted for QTL mapping. The candidate gene was further fine-mapped using a secondary segregation mapping population and validated by transgenic experiments. RNA-Seq analysis among resistant and susceptible RILs was used to reveal the resistance pathway for the candidate genes. RESULTS: The major effect QTL qAFTRA07.1 for aflatoxin production resistance was mapped to a 1.98 Mbp interval. A gene, AhAftr1 (Arachis hypogaea Aflatoxin resistance 1), was detected structure variation (SV) in leucine rich repeat (LRR) domain of its production, and involved in disease resistance response through the effector-triggered immunity (ETI) pathway. Transgenic plants with overexpression of AhAftr1(ZH6) exhibited 57.3% aflatoxin reduction compared to that of AhAftr1(XH13). A molecular diagnostic marker AFTR.Del.A07 was developed based on the SV. Thirty-six lines, with aflatoxin content decrease by over 77.67% compared to the susceptible control Zhonghua12 (ZH12), were identified from a panel of peanut germplasm accessions and breeding lines through using AFTR.Del.A07. CONCLUSION: Our findings would provide insights of aflatoxin production resistance mechanisms and laid meaningful foundation for further breeding programs.

2.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687391

ABSTRACT

Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop worldwide, providing high-quality edible oil and high protein content. Seed size/weight and oil content are two important determinants of yield and quality in peanut breeding. To identify key regulators controlling these two traits, two peanut cultivars with contrasting phenotypes were compared to each other, one having a larger seed size and higher oil content (Zhonghua16, ZH16 for short), while the second cultivar had smaller-sized seeds and lower oil content (Zhonghua6, ZH6). Whole transcriptome analyses were performed on these two cultivars at four stages of seed development. The results showed that ~40% of the expressed genes were stage-specific in each cultivar during seed development, especially at the early stage of development. In addition, we identified a total of 5356 differentially expressed genes (DEGs) between ZH16 and ZH6 across four development stages. Weighted gene co-expression network analysis (WGCNA) based on DEGs revealed multiple hub genes with potential roles in seed size/weight and/or oil content. These hub genes were mainly involved in transcription factors (TFs), phytohormones, the ubiquitin-proteasome pathway, and fatty acid synthesis. Overall, the candidate genes and co-expression networks detected in this study could be a valuable resource for genetic breeding to improve seed yield and quality traits in peanut.

3.
Front Plant Sci ; 14: 1145098, 2023.
Article in English | MEDLINE | ID: mdl-37021305

ABSTRACT

Introduction: Peanut (Arachis hypogaea L.) is an important cash crop worldwide. Compared with the ordinary peanut with pure pink testa, peanut with variegated testa color has attractive appearance and a higher market value. In addition, the variegated testa represents a distinct regulation pattern of anthocyanin accumulation in integument cells. Methods: In order to identify the genetic locus underlying variegated testa color in peanut, two populations were constructed from the crosses between Fuhua 8 (pure-pink testa) and Wucai (red on white variegated testa), Quanhonghua 1 (pure-red testa) and Wucai, respectively. Genetic analysis and bulked sergeant analysis sequencing were applied to detect and identify the genetic locus for variegated testa color. Marker-assisted selection was used to develop new variegated testa peanut lines. Results: As a result, all the seeds harvested from the F1 individuals of both populations showed the variegated testa type with white trace. Genetic analysis revealed that the pigmentation of colored region in red on white variegated testa was controlled by a previous reported gene AhRt1, while the formation of white region (un-pigmented region) in variegated testa was controlled by another single genetic locus. This locus, named as AhVt1 (Arachis hypogaea Variegated Testa 1), was preliminary mapped on chromosome 08 through bulked sergeant analysis sequencing. Using a secondary mapping population derived from the cross between Fuhua 8 and Wucai, AhVt1 was further mapped to a 1.89-Mb genomic interval by linkage analysis, and several potential genes associated with the uneven distribution of anthocyanin, such as MADS-box, MYB, and Chalcone synthase-like protein, were harbored in the region. Moreover, the molecular markers closely linked to the AhVt1 were developed, and the new variegated testa peanut lines were obtained with the help of marker-assisted selection. Conclusion: Our findings will accelerate the breeding program for developing new peanut varieties with "colorful" testa colors and laid a foundation for map-based cloning of gene responsible for variegated testa.

4.
Genes (Basel) ; 14(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36980897

ABSTRACT

Peanut is susceptible to Aspergillus flavus infection, and the consequent aflatoxin contamination has been recognized as an important risk factor affecting food safety and industry development. Planting peanut varieties with resistance to aflatoxin contamination is regarded as an ideal approach to decrease the risk in food safety, but most of the available resistant varieties have not been extensively used in production because of their low yield potential mostly due to possessing small pods and seeds. Hence, it is highly necessary to integrate resistance to aflatoxin and large seed weight. In this study, an RIL population derived from a cross between Zhonghua 16 with high yield and J 11 with resistance to infection of A. flavus and aflatoxin production, was used to identify quantitative trait locus (QTL) for aflatoxin production (AP) resistance and hundred-seed weight (HSW). From combined analysis using a high-density genetic linkage map constructed, 11 QTLs for AP resistance with 4.61-11.42% phenotypic variation explanation (PVE) and six QTLs for HSW with 3.20-28.48% PVE were identified, including three major QTLs for AP resistance (qAFTA05.1, qAFTB05.2 and qAFTB06.3) and three for HSW (qHSWA05, qHSWA08 and qHSWB06). In addition, qAFTA05.1, qAFTB06.3, qHSWA05, qHSWA08 and qHSWB06 were detected in multiple environments. The aflatoxin contents under artificial inoculation were decreased by 34.77-47.67% in those segregated lines harboring qAFTA05.1, qAFTB05.2 and qAFTB06.3, while the HSWs were increased by 47.56-49.46 g in other lines harboring qHSWA05, qHSWA08 and qHSWB06. Conditional QTL mapping indicated that HSW and percent seed infection index (PSII) had no significant influence on aflatoxin content. Interestingly, the QT 1059 simultaneously harboring alleles of aflatoxin content including qAFTA05.1 and qAFTB05.2, alleles of PSII including qPSIIB03.1, qPSIIB03.2, and qPSIIB10 and alleles of HSW including qHSWA05, qHSWB06, qHSWA08 had better resistance to A. flavus infection and to toxin production and higher yield potential compared with the two parents of the RIL. The above identified major loci for AP resistance and HWS would be helpful for marker-assisted selection in peanut breeding.


Subject(s)
Aflatoxins , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Arachis/genetics , Plant Breeding , Chromosome Mapping
5.
Theor Appl Genet ; 136(4): 78, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36952020

ABSTRACT

KEY MESSAGE: An InDel marker closely linked with a major and stable quantitative trait locus (QTL) on chromosome A08, qSUCA08.2, controlling sucrose content will benefit peanut flavor improvement. Sucrose is the main soluble sugar in mature peanut kernel, and its content is a key determinant of flavor. However, the genetic basis of sucrose content in peanut remains poorly understood, which limits the progress of flavor improvement. In the present study, two genomic regions (qSUCA08a and qSUCB06a) for sucrose content on chromosomes A08 and B06 were identified by QTL-seq in a RIL population derived from a cross between Zhonghua 10 and ICG 12625. In the interval of qSUCB06a, QTL qSUCB06.2 was detected through QTL mapping in a single environment. The qSUCA08a was further dissected into 3 adjacent genomic regions using linkage analysis including a major QTL qSUCA08.2 explaining 5.43-17.84% phenotypic variation across five environments. A 61-bp insertion at position 35,099,320 in the higher sucrose parent ICG 12625 was found in qSUCA08.2. An InDel marker SUC.InDel.A08 based on the insertion/deletion polymorphism was developed and validated within a natural population containing 172 peanut cultivars in two environments. The mean sucrose content of 93 cultivars with ICG 12625 allele was significantly higher than that of 79 cultivars with Zhonghua 10 allele. The qSUCA08.2 corresponding to a 2.11 Mb interval harbored 110 genes. Among these genes, a total of 19 genes were considered as candidate genes including 5 non-synonymous mutation genes and 14 differentially expressed genes during seed development. These results provide new insights into the genetic basis of sucrose regulation in peanut and benefit the breeding program for developing new varieties with excellent flavor.


Subject(s)
Arachis , Quantitative Trait Loci , Arachis/genetics , Phenotype , Sucrose , Plant Breeding
6.
PLoS One ; 17(12): e0279650, 2022.
Article in English | MEDLINE | ID: mdl-36584016

ABSTRACT

Peanut (Arachis hypogaea L.) is an important source of edible oil and protein for human nutrition. The quality of peanut seed oil is mainly determined by the composition of fatty acids, especially the contents of oleic acid and linoleic acid. Improving the composition of fatty acids in the seed oil is one of the main objectives for peanut breeding globally. To uncover the genetic basis of fatty acids and broaden the genetic variation in future peanut breeding programs, this study used genome-wide association studies (GWAS) to identify loci associated with target traits and developed diagnostic marker. The contents of eight fatty acid components of the Chinese peanut mini-core collection were measured under four environments. Using the phenotypic information and over one hundred thousand single nucleotide polymorphisms (SNPs), GWAS were conducted to investigate the genetics basis of fatty acids under multi-environments. Overall, 75 SNPs were identified significant trait associations with fatty acid components. Nineteen associations were repeatedly identified in multiple environments, and 13 loci were co-associated with two or three traits. Three stable major associated loci were identified, including two loci for oleic acid and linoleic acid on chromosome A09 [mean phenotypic variation explained (PVE): 38.5%, 10.35%] and one for stearic acid on B06 (mean PVE: 23%). According to functional annotations, 21 putative candidate genes related to fatty acid biosynthesis were found underlying the three associations. The allelic effect of SNP A09-114690064 showed that the base variation was highly correlated with the phenotypic variation of oleic acid and linoleic acid contents, and a cost-effective Kompetitive allele-Specific PCR (KASP) diagnostic marker was developed. Furthermore, the SNP A09-114690064 was found to change the cis-element CAAT (-) in the promoter of ahFAD2A to YACT (+), leading dozens of times higher expression level. The enhancer-like activity of ahFAD2A promoter was identified that was valuable for enriching the regulation mechanism of ahFAD2A. This study improved our understanding on the genetic architecture of fatty acid components in peanut, and the new effective diagnostic marker would be useful for marker-assisted selection of high-oleic peanut breeding.


Subject(s)
Arachis , Fatty Acids , Arachis/genetics , Arachis/metabolism , Fatty Acid Desaturases/genetics , Fatty Acid Desaturases/metabolism , Fatty Acids/metabolism , Genome-Wide Association Study , Linoleic Acid/metabolism , Oleic Acid/metabolism , Peanut Oil , Phenotype , Plant Breeding
7.
BMC Plant Biol ; 22(1): 207, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35448951

ABSTRACT

BACKGROUND: Aflatoxin contamination caused by Aspergillus fungi has been a serious factor affecting food safety of peanut (Arachis hypogaea L.) because aflatoxins are highly harmful for human and animal health. As three mechanisms of resistance to aflatoxin in peanut including shell infection resistance, seed infection resistance and aflatoxin production resistance exist among naturally evolved germplasm stocks, it is highly crucial to pyramid these three resistances for promoting peanut industry development and protecting consumers' health. However, less research effort has been made yet to investigate the differentiation and genetic relationship among the three resistances in diversified peanut germplasm collections. RESULTS: In this study, the Chinese peanut mini-mini core collection selected from a large basic collection was systematically evaluated for the three resistances against A. flavus for the first time. The research revealed a wide variation among the diversified peanut accessions for all the three resistances. Totally, 14 resistant accessions were identified, including three with shell infection resistance, seven with seed infection resistance and five with aflatoxin production resistance. A special accession, Zh.h1312, was identified with both seed infection and aflatoxin production resistance. Among the five botanic types of A. hypogaea, the var. vulgaris (Spanish type) belonging to subspecies fastigiata is the only one which possessed all the three resistances. There was no close correlation between shell infection resistance and other two resistances, while there was a significant positive correlation between seed infection and toxin production resistance. All the three resistances had a significant negative correlation with pod or seed size. A total of 16 SNPs/InDels associated with the three resistances were identified through genome-wide association study (GWAS). Through comparative analysis, Zh.h1312 with seed infection resistance and aflatoxin production resistance was also revealed to possess all the resistance alleles of associated loci for seed infection index and aflatoxin content. CONCLUSIONS: This study provided the first comprehensive understanding of differentiation of aflatoxin resistance in diversified peanut germplasm collection, and would further contribute to the genetic enhancement for resistance to aflatoxin contamination.


Subject(s)
Aflatoxins , Animals , Arachis/genetics , Arachis/microbiology , Aspergillus flavus/genetics , China , Genome-Wide Association Study
8.
Front Plant Sci ; 13: 1065267, 2022.
Article in English | MEDLINE | ID: mdl-36589096

ABSTRACT

Introduction: The wild allotetraploid peanut Arachis monticola contains a higher oil content than the cultivated allotetraploid Arachis hypogaea. Besides the fact that increasing oil content is the most important peanut breeding objective, a proper understanding of its molecular mechanism controlling oil accumulation is still lacking. Methods: We investigated this aspect by performing comparative transcriptomics from developing seeds between three wild and five cultivated peanut varieties. Results: The analyses not only showed species-specific grouping transcriptional profiles but also detected two gene clusters with divergent expression patterns between two species enriched in lipid metabolism. Further analysis revealed that expression alteration of lipid metabolic genes with co-expressed transcription factors in wild peanut led to enhanced activity of oil biogenesis and retarded the rate of lipid degradation. In addition, bisulfite sequencing was conducted to characterize the variation of DNA methylation between wild allotetraploid (245, WH 10025) and cultivated allotetraploid (Z16, Zhh 7720) genotypes. CG and CHG context methylation was found to antagonistically correlate with gene expression during seed development. Differentially methylated region analysis and transgenic assay further illustrated that variations of DNA methylation between wild and cultivated peanuts could affect the oil content via altering the expression of peroxisomal acyl transporter protein (Araip.H6S1B). Discussion: From the results, we deduced that DNA methylation may negatively regulate lipid metabolic genes and transcription factors to subtly affect oil accumulation divergence between wild and cultivated peanuts. Our work provided the first glimpse on the regulatory mechanism of gene expression altering for oil accumulation in wild peanut and gene resources for future breeding applications.

9.
Front Plant Sci ; 12: 745408, 2021.
Article in English | MEDLINE | ID: mdl-34745176

ABSTRACT

The cultivated peanut (Arachis hypogaea L.), which is rich in edible oil and protein, is widely planted around the world as an oil and cash crop. However, aflatoxin contamination seriously affects the quality safety of peanuts, hindering the development of the peanut industry and threatening the health of consumers. Breeding peanut varieties with resistance to Aspergillus flavus infection is important for the control of aflatoxin contamination, and understanding the genetic basis of resistance is vital to its genetic enhancement. In this study, we reported the quantitative trait locus (QTL) mapping of resistance to A. flavus infection of a well-known resistant variety, J11. A mapping population consisting of 200 recombinant inbred lines (RILs) was constructed by crossing a susceptible variety, Zhonghua 16, with J11. Through whole-genome resequencing, a genetic linkage map was constructed with 2,802 recombination bins and an average inter-bin distance of 0.58 cM. Combined with phenotypic data of an infection index in 4 consecutive years, six novel resistant QTLs with 5.03-10.87% phenotypic variances explained (PVE) were identified on chromosomes A05, A08, B01, B03, and B10. The favorable alleles of five QTLs were from J11, while that of one QTL was from Zhonghua 16. The combination of these favorable alleles significantly improved resistance to A. flavus infection. These results could contribute greatly to the understanding of the genetic basis of A. flavus resistance and could be meaningful in the improvement of further resistance in peanuts.

10.
Theor Appl Genet ; 134(11): 3721-3730, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34379146

ABSTRACT

KEY MESSAGE: AhRt1 controlling red testa color in peanut was fine-mapped to an interval of 580 kb on chromosome A03, and one gene encoding bHLH transcriptional factor was identified as the putative candidate gene. Peanut with red testa has higher nutritional and economic value than the traditional pink testa varieties. Identification of genes controlling red testa color will accelerate the breeding program and facilitate uncovering the genetic mechanism. In this study, in order to identify gene underlying the red testa color in peanut, a F2 population derived from a cross between a pink testa peanut variety "Fuhua 8" and a red testa variety "Quanhonghua 1" was constructed. The genetic analysis for the F2 population revealed that the red testa color was controlled by one single dominant locus. This locus, named as AhRt1 (Arachis hypogaea Red Testa 1), was preliminary identified in chromosome A03 by BSA-sequencing analysis. Using a segregation mapping population, AhRt1 was fine-mapped to a 580-kb genomic region by substitution mapping strategy. Gene candidate analysis suggested that one predicted gene encoding bHLH transcriptional factor may be the possible candidate gene for AhRt1. A diagnostic marker closely linked to candidate gene has been developed for validating the fine-mapping result in different populations and peanut germplasm. Our findings will benefit the breeding program for developing new varieties with red testa color and laid foundation for map-based cloning gene responsible for red testa in peanut.


Subject(s)
Arachis/genetics , Genes, Dominant , Genes, Plant , Pigmentation/genetics , Anthocyanins , Basic Helix-Loop-Helix Transcription Factors/genetics , Chromosome Mapping , Color , Genetic Markers , Polymorphism, Single Nucleotide
11.
Int J Mol Sci ; 22(14)2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34298903

ABSTRACT

Sucrose content is a crucial indicator of quality and flavor in peanut seed, and there is a lack of clarity on the molecular basis of sucrose metabolism in peanut seed. In this context, we performed a comprehensive comparative transcriptome study on the samples collected at seven seed development stages between a high-sucrose content variety (ICG 12625) and a low-sucrose content variety (Zhonghua 10). The transcriptome analysis identified a total of 8334 genes exhibiting significantly different abundances between the high- and low-sucrose varieties. We identified 28 differentially expressed genes (DEGs) involved in sucrose metabolism in peanut and 12 of these encoded sugars will eventually be exported transporters (SWEETs). The remaining 16 genes encoded enzymes, such as cell wall invertase (CWIN), vacuolar invertase (VIN), cytoplasmic invertase (CIN), cytosolic fructose-bisphosphate aldolase (FBA), cytosolic fructose-1,6-bisphosphate phosphatase (FBP), sucrose synthase (SUS), cytosolic phosphoglucose isomerase (PGI), hexokinase (HK), and sucrose-phosphate phosphatase (SPP). The weighted gene co-expression network analysis (WGCNA) identified seven genes encoding key enzymes (CIN, FBA, FBP, HK, and SPP), three SWEET genes, and 90 transcription factors (TFs) showing a high correlation with sucrose content. Furthermore, upon validation, six of these genes were successfully verified as exhibiting higher expression in high-sucrose recombinant inbred lines (RILs). Our study suggested the key roles of the high expression of SWEETs and enzymes in sucrose synthesis making the genotype ICG 12625 sucrose-rich. This study also provided insights into the molecular basis of sucrose metabolism during seed development and facilitated exploring key candidate genes and molecular breeding for sucrose content in peanuts.


Subject(s)
Arachis/genetics , Arachis/metabolism , Sucrose/metabolism , Transcriptome/genetics , Carbohydrate Metabolism/genetics , Cell Wall/genetics , Cell Wall/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant/genetics , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Seeds/genetics , Seeds/metabolism , beta-Fructofuranosidase/genetics , beta-Fructofuranosidase/metabolism
12.
Front Plant Sci ; 12: 637284, 2021.
Article in English | MEDLINE | ID: mdl-34093605

ABSTRACT

Peanut is an important legume crop worldwide. To uncover the genetic basis of yield features and assist breeding in the future, we conducted genome-wide association studies (GWAS) for six yield-related traits of the Chinese peanut mini-core collection. The seed (pod) size and weight of the population were investigated under four different environments, and these traits showed highly positive correlations in pairwise combinations. We sequenced the Chinese peanut mini-core collection using genotyping-by-sequencing approach and identified 105,814 high-quality single-nucleotide polymorphisms (SNPs). The population structure analysis showed essentially subspecies patterns in groups and obvious geographical distribution patterns in subgroups. A total of 79 significantly associated loci (P < 4.73 × 10-7) were detected for the six yield-related traits through GWAS. Of these, 31 associations were consistently detected in multiple environments, and 15 loci were commonly detected to be associated with multiple traits. Two major loci located on chromosomal pseudomolecules A06 and A02 showed pleiotropic effects on yield-related traits, explaining ∼20% phenotypic variations across environments. The two genomic regions were found 46 putative candidate genes based on gene annotation and expression profile. The diagnostic marker for the yield-related traits from non-synonymous SNP (Aradu-A06-107901527) was successfully validated, achieving a high correlation between nucleotide polymorphism and phenotypic variation. This study provided insights into the genetic basis of yield-related traits in peanut and verified one diagnostic marker to facilitate marker-assisted selection for developing high-yield peanut varieties.

13.
Front Plant Sci ; 12: 644402, 2021.
Article in English | MEDLINE | ID: mdl-33868342

ABSTRACT

Resveratrol (trans-3,4',5-trihydroxystilbene) is a natural stilbene phytoalexin which is also found to be good for human health. Cultivated peanut (Arachis hypogaea L.), a worldwide important legume crop, is one of the few sources of human's dietary intake of resveratrol. Although the variations of resveratrol contents among peanut varieties were observed, the variations across environments and its underlying genetic basis were poorly investigated. In this study, the resveratrol content in seeds of a recombination inbred line (RIL) population (Zhonghua 6 × Xuhua 13, 186 progenies) were quantified by high performance liquid chromatography (HPLC) method across four environments. Genotypes, environments and genotype × environment interactions significantly influenced the resveratrol contents in the RIL population. A total of 8,114 high-quality single nucleotide polymorphisms (SNPs) were identified based on double-digest restriction-site-associated DNA sequencing (ddRADseq) reads. These SNPs were clustered into bins using a reference-based method, which facilitated the construction of high-density genetic map (2,183 loci with a total length of 2,063.55 cM) and the discovery of several chromosome translocations. Through composite interval mapping (CIM), nine additive quantitative trait loci (QTL) for resveratrol contents were identified on chromosomes A01, A07, A08, B04, B05, B06, B07, and B10 with 5.07-8.19% phenotypic variations explained (PVE). Putative genes within their confidential intervals might play roles in diverse primary and secondary metabolic processes. These results laid a foundation for the further genetic dissection of resveratrol content as well as the breeding and production of high-resveratrol peanuts.

14.
BMC Genet ; 21(1): 60, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32513099

ABSTRACT

BACKGROUND: Peanut is one of the primary sources for vegetable oil worldwide, and enhancing oil content is the main objective in several peanut breeding programs of the world. Tightly linked markers are required for faster development of high oil content peanut varieties through genomics-assisted breeding (GAB), and association mapping is one of the promising approaches for discovery of such associated markers. RESULTS: An association mapping panel consisting of 292 peanut varieties extensively distributed in China was phenotyped for oil content and genotyped with 583 polymorphic SSR markers. These markers amplified 3663 alleles with an average of 6.28 alleles per locus. The structure, phylogenetic relationship, and principal component analysis (PCA) indicated two subgroups majorly differentiating based on geographic regions. Genome-wide association analysis identified 12 associated markers including one (AGGS1014_2) highly stable association controlling up to 9.94% phenotypic variance explained (PVE) across multiple environments. Interestingly, the frequency of the favorable alleles for 12 associated markers showed a geographic difference. Two associated markers (AGGS1014_2 and AHGS0798) with 6.90-9.94% PVE were verified to enhance oil content in an independent RIL population and also indicated selection during the breeding program. CONCLUSION: This study provided insights into the genetic basis of oil content in peanut and verified highly associated two SSR markers to facilitate marker-assisted selection for developing high-oil content breeding peanut varieties.


Subject(s)
Arachis/genetics , Chromosome Mapping , Peanut Oil/analysis , Plant Breeding , Alleles , Arachis/chemistry , China , Genetic Association Studies , Genetic Markers , Genetics, Population , Genotype , Linkage Disequilibrium , Microsatellite Repeats , Phenotype , Phylogeny , Principal Component Analysis
15.
Toxins (Basel) ; 12(3)2020 03 01.
Article in English | MEDLINE | ID: mdl-32121605

ABSTRACT

Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) are the most common aflatoxins produced by Aspergillus flavus in peanuts, with high carcinogenicity and teratogenicity. Identification of DNA markers associated with resistance to aflatoxin production is likely to offer breeders efficient tools to develop resistant cultivars through molecular breeding. In this study, seeds of 99 accessions of a Chinese peanut mini-mini core collection were investigated for their reaction to aflatoxin production by a laboratory kernel inoculation assay. Two resistant accessions (Zh.h0551 and Zh.h2150) were identified, with their aflatoxin content being 8.11%-18.90% of the susceptible control. The 99 peanut accessions were also genotyped by restriction site-associated DNA sequencing (RAD-Seq) for a genome-wide association study (GWAS). A total of 60 SNP (single nucleotide polymorphism) markers associated with aflatoxin production were detected, and they explained 16.87%-31.70% of phenotypic variation (PVE), with SNP02686 and SNP19994 possessing 31.70% and 28.91% PVE, respectively. Aflatoxin contents of accessions with "AG" (existed in Zh.h0551 and Zh.h2150) and "GG" genotypes of either SNP19994 or SNP02686 were significantly lower than that of "AA" genotypes in the mean value of a three-year assay. The resistant accessions and molecular markers identified in this study are likely to be helpful for deployment in aflatoxin resistance breeding in peanuts.


Subject(s)
Aflatoxins/biosynthesis , Arachis/genetics , Arachis/microbiology , Disease Resistance/genetics , Genotype , Phenotype , Polymorphism, Single Nucleotide
16.
J Sep Sci ; 43(6): 1024-1031, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31916409

ABSTRACT

Resveratrol, a stilbene phytoalexin in plants, is believed to benefit human health. In this study, an optimized enzyme-assisted method was developed to extract the total content of trans-resveratrol (free or combined with glucose) in peanut seeds, followed by detection using high-performance liquid chromatography. The extraction process was optimized by Box-Behnken design and response surface methodology. The optimized enzyme concentration, digestion time, pH, and temperature were 3.02 g/L, 57.06 min, 5.88, and 51.05°C, respectively. Validation tests indicated that the experimental yield of trans-resveratrol was 0.183 ± 0.007 µg/g with a relative standard deviation of 3.87% (n = 5) under the optimal condition, which was closely agreed with the predicted value (0.182 µg/g). The recoveries obtained from the spiked samples were varied from 89.4 to 103.9%. Therefore, this study will provide a useful method for quantification of total trans-resveratrol in peanut seeds.


Subject(s)
Arachis/chemistry , Resveratrol/isolation & purification , Seeds/chemistry , Cellulase/chemistry , Cellulase/metabolism , Chromatography, High Pressure Liquid , Resveratrol/chemistry , Resveratrol/metabolism , Surface Properties
17.
Theor Appl Genet ; 133(4): 1133-1148, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31980836

ABSTRACT

KEY MESSAGE: Two novel and adjacent genomics and candidate genes for bacterial wilt resistance were identified on chromosome B02 in peanut variety Zhonghua 6 using both traditional QTL mapping and QTL-seq methods. Peanut (Arachis hypogaea) is an important oilseed crop worldwide. Utilization of genetic resistance is the most economic and effective approach to control bacterial wilt, one of the most devastating plant diseases, in peanut production. To accelerate the genetic improvement of bacterial wilt resistance (BWR) in peanut breeding programs, quantitative trait locus (QTL) mapping has been conducted for two resistant varieties. In this context, we deployed linkage mapping as well as sequencing-based mapping approach, QTL-seq, to identify genomic regions and candidate genes for BWR in another highly resistant variety Zhonghua 6. The recombination inbred line population (268 progenies) from the cross Xuhua 13 × Zhonghua 6 was used in BWR evaluation across five environments. QTL mapping using both SSR- and SNP-based genetic maps identified a stable QTL (qBWRB02-1) on chromosome B02 with 37.79-78.86% phenotypic variation explained (PVE) across five environments. The QTL-seq facilitated further dissection of qBWRB02-1 into two adjacent genomic regions, qBWRB02-1-1 (2.81-4.24 Mb) and qBWRB02-1-2 (6.54-8.75 Mb). Mapping of newly developed Kompetitive allele-specific PCR (KASP) markers on the genetic map confirmed their stable expressions across five environments. The effects of qBWRB02-1-1 (49.43-68.86% PVE) were much higher than qBWRB02-1-2 (3.96-6.48% PVE) and other previously reported QTLs. Nineteen putative candidate genes affected by 49 non-synonymous SNPs were identified for qBWRB02-1-1, and ten of them were predicted to code for disease resistance proteins. The major and stable QTL qBWRB02-1-1 and validated KASP markers could be deployed in genomics-assisted breeding (GAB) to develop improved peanut varieties with enhanced BWR.


Subject(s)
Arachis/genetics , Arachis/microbiology , Chromosomes, Plant/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Quantitative Trait Loci/genetics , Chromosome Mapping , Genetic Association Studies , Genome, Plant , Inbreeding , Microsatellite Repeats/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Tetraploidy
18.
Plant Biotechnol J ; 18(3): 779-790, 2020 03.
Article in English | MEDLINE | ID: mdl-31469515

ABSTRACT

The transcriptome connects genome to the gene function and ultimate phenome in biology. So far, transcriptomic approach was not used in peanut for performing trait mapping in bi-parental populations. In this research, we sequenced the whole transcriptome in immature seeds in a peanut recombinant inbred line (RIL) population and explored thoroughly the landscape of transcriptomic variations and its genetic basis. The comprehensive analysis identified total 49 691 genes in RIL population, of which 92 genes followed a paramutation-like expression pattern. Expression quantitative trait locus (eQTL) analysis identified 1207 local eQTLs and 15 837 distant eQTLs contributing to the whole-genome transcriptomic variation in peanut. There were 94 eQTL hot spot regions detected across the genome with the dominance of distant eQTL. By integrating transcriptomic profile and annotation analyses, we unveiled a putative candidate gene and developed a linked marker InDel02 underlying a major QTL responsible for purple testa colour in peanut. Our result provided a first understanding of genetic basis of whole-genome transcriptomic variation in peanut and illustrates the potential of the transcriptome-aid approach in dissecting important traits in non-model plants.


Subject(s)
Arachis/genetics , Quantitative Trait Loci , Transcriptome , Genetic Markers , INDEL Mutation , Phenotype , Plant Breeding
19.
Theor Appl Genet ; 133(1): 37-49, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31559527

ABSTRACT

KEY MESSAGE: ddRAD-seq-based high-density genetic map comprising 2595 loci identified a major and consensus QTL with a linked marker in a 0.8-Mb physical interval for oil content in peanut. Enhancing oil content is an important breeding objective in peanut. High-resolution mapping of quantitative trait loci (QTLs) with linked markers could facilitate marker-assisted selection in breeding for target traits. In the present study, a recombined inbred line population (Xuhua 13 × Zhonghua 6) was used to construct a genetic map based on double-digest restriction-site-associated DNA sequencing (ddRAD-seq). The resulting high-density genetic map contained 2595 loci, and spanned a length of 2465.62 cM, with an average distance of 0.95 cM/locus. Seven QTLs for oil content were identified on five linkage groups, including the major and stable QTL qOCA08.1 on chromosome A08 with 10.14-27.19% phenotypic variation explained. The physical interval of qOCA08.1 was further delimited to a ~ 0.8-Mb genomic region where two genes affecting oil synthesis had been annotated. The marker SNPOCA08 was developed targeting the SNP loci associated with oil content and validated in peanut cultivars with diverse oil contents. The major and stable QTL identified in the present study could be further dissected for gene discovery. Furthermore, the tightly linked marker for oil content would be useful in marker-assisted breeding in peanut.


Subject(s)
Arachis/genetics , Chromosomes, Plant/genetics , Physical Chromosome Mapping/methods , Quantitative Trait Loci/genetics , Base Sequence , Genetic Markers , Genotype , Inbreeding , Peanut Oil/metabolism , Phenotype , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
20.
Plant Biotechnol J ; 17(12): 2356-2369, 2019 12.
Article in English | MEDLINE | ID: mdl-31087470

ABSTRACT

Bacterial wilt, caused by Ralstonia solanacearum, is a devastating disease affecting over 350 plant species. A few peanut cultivars were found to possess stable and durable bacterial wilt resistance (BWR). Genomics-assisted breeding can accelerate the process of developing resistant cultivars by using diagnostic markers. Here, we deployed sequencing-based trait mapping approach, QTL-seq, to discover genomic regions, candidate genes and diagnostic markers for BWR in a recombination inbred line population (195 progenies) of peanut. The QTL-seq analysis identified one candidate genomic region on chromosome B02 significantly associated with BWR. Mapping of newly developed single nucleotide polymorphism (SNP) markers narrowed down the region to 2.07 Mb and confirmed its major effects and stable expressions across three environments. This candidate genomic region had 49 nonsynonymous SNPs affecting 19 putative candidate genes including seven putative resistance genes (R-genes). Two diagnostic markers were successfully validated in diverse breeding lines and cultivars and could be deployed in genomics-assisted breeding of varieties with enhanced BWR.


Subject(s)
Arachis/genetics , Disease Resistance/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Arachis/microbiology , Chromosome Mapping , Chromosomes, Plant , Genomics , High-Throughput Nucleotide Sequencing , Plant Diseases/microbiology , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...