Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Diabetes ; 71(4): 795-811, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35043173

ABSTRACT

Methazolamide (MTZ), a carbonic anhydrase inhibitor, has been shown to inhibit cardiomyocyte hypertrophy and exert a hypoglycemic effect in patients with type 2 diabetes and diabetic db/db mice. However, whether MTZ has a cardioprotective effect in the setting of diabetic cardiomyopathy is not clear. We investigated the effects of MTZ in a mouse model of streptozotocin-induced type 1 diabetes mellitus (T1DM). Diabetic mice received MTZ by intragastric gavage (10, 25, or 50 mg/kg, daily for 16 weeks). In the diabetic group, MTZ significantly reduced both random and fasting blood glucose levels and improved glucose tolerance in a dose-dependent manner. MTZ ameliorated T1DM-induced changes in cardiac morphology and dysfunction. Mechanistic analysis revealed that MTZ blunted T1DM-induced enhanced expression of ß-catenin. Similar results were observed in neonatal rat cardiomyocytes (NRCMs) and adult mouse cardiomyocytes treated with high glucose or Wnt3a (a ß-catenin activator). There was no significant change in ß-catenin mRNA levels in cardiac tissues or NRCMs. MTZ-mediated ß-catenin downregulation was recovered by MG132, a proteasome inhibitor. Immunoprecipitation and immunofluorescence analyses showed augmentation of AXIN1-ß-catenin interaction by MTZ in T1DM hearts and in NRCMs treated with Wnt3a; thus, MTZ may potentiate AXIN1-ß-catenin linkage to increase ß-catenin degradation. Overall, MTZ may alleviate cardiac hypertrophy by mediating AXIN1-ß-catenin interaction to promote degradation and inhibition of ß-catenin activity. These findings may help inform novel therapeutic strategy to prevent heart failure in patients with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Animals , Axin Protein/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/prevention & control , Glucose/metabolism , Humans , Methazolamide/metabolism , Methazolamide/pharmacology , Methazolamide/therapeutic use , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Rats , beta Catenin/metabolism
2.
Acta Pharmacol Sin ; 42(10): 1587-1597, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33495518

ABSTRACT

Antiepileptic drug zonisamide has been shown to be curative for Parkinson's disease (PD) through increasing HMG-CoA reductase degradation protein 1 (Hrd1) level and mitigating endoplasmic reticulum (ER) stress. Hrd1 is an ER-transmembrane E3 ubiquitin ligase, which is involved in cardiac dysfunction and cardiac hypertrophy in a mouse model of pressure overload. In this study, we investigated whether zonisamide alleviated cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting ER stress. The beneficial effects of zonisamide were assessed in two experimental models of cardiac hypertrophy: in rats subjected to abdominal aorta constriction (AAC) and treated with zonisamide (14, 28, 56 mg · kg-1 · d-1, i.g.) for 6 weeks as well as in neonatal rat cardiomyocytes (NRCMs) co-treated with Ang II (10 µM) and zonisamide (0.3 µM). Echocardiography analysis revealed that zonsiamide treatment significantly improved cardiac function in AAC rats. We found that zonsiamide treatment significantly attenuated cardiac hypertrophy and fibrosis, and suppressed apoptosis and ER stress in the hearts of AAC rats and in Ang II-treated NRCMs. Importantly, zonisamide markedly increased the expression of Hrd1 in the hearts of AAC rats and in Ang II-treated NRCMs. Furthermore, we demonstrated that zonisamide accelerated ER-associated protein degradation (ERAD) in Ang II-treated NRCMs; knockdown of Hrd1 abrogated the inhibitory effects of zonisamide on ER stress and cardiac hypertrophy. Taken together, our results demonstrate that zonisamide is effective in preserving heart structure and function in the experimental models of pathological cardiac hypertrophy. Zonisamide increases Hrd1 expression, thus preventing cardiac hypertrophy and improving the cardiac function of AAC rats.


Subject(s)
Cardiomegaly/drug therapy , Endoplasmic Reticulum Stress/drug effects , Ubiquitin-Protein Ligases/metabolism , Zonisamide/therapeutic use , Animals , Aorta, Abdominal/surgery , Apoptosis/drug effects , Endoplasmic Reticulum-Associated Degradation/drug effects , Fibrosis/drug therapy , Male , Myocytes, Cardiac/drug effects , Rats, Sprague-Dawley , Up-Regulation/drug effects
3.
Acta Pharmacol Sin ; 42(3): 393-403, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32647341

ABSTRACT

Endoplasmic reticulum stress (ER stress) plays a key role in the development of cardiac hypertrophy and diabetic cardiomyopathy (DCM). Zonisamide (ZNS) was originally developed as an antiepileptic drug. Studies have shown that ZNS suppresses ER stress-induced neuronal cell damage in the experimental models of Parkinson's disease. Herein, we investigated whether ZNS improved DCM by attenuating ER stress-induced apoptosis. C57BL/6J mice were fed with high-fat diet (HFD) and intraperitoneally injected with low-dose streptozotocin (STZ) to induce type 2 diabetes mellitus (T2DM), and then treated with ZNS (40 mg·kg-1·d-1, i.g.) for 16 weeks. We showed that ZNS administration slightly ameliorated the blood glucose levels, but significantly alleviated diabetes-induced cardiac dysfunction and hypertrophy. Furthermore, ZNS administration significantly inhibited the Bax and caspase-3 activity, upregulated Bcl-2 activity, and decreased the proportion of TUNEL-positive cells in heart tissues. We analyzed the hallmarks of ER stress in heart tissues, and revealed that ZNS administration significantly decreased the protein levels of GRP78, XBP-1s, ATF6, PERK, ATF4, and CHOP, and elevated Hrd1 protein. In high glucose (HG)-treated primary cardiomyocytes, application of ZNS (3 µM) significantly alleviated HG-induced cardiomyocyte hypertrophy and apoptosis. ZNS application also suppressed activated ER stress in HG-treated cardiomyocytes. Moreover, preapplication of the specific ER stress inducer tunicamycin (10 ng/mL) eliminated the protective effects of ZNS against HG-induced cardiac hypertrophy and ER stress-mediated apoptosis. Our findings suggest that ZNS improves the cardiac diastolic function in diabetic mice and prevents T2DM-induced cardiac hypertrophy by attenuating ER stress-mediated apoptosis.


Subject(s)
Anticonvulsants/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetic Cardiomyopathies/drug therapy , Endoplasmic Reticulum Stress/drug effects , Zonisamide/therapeutic use , Animals , Apoptosis/drug effects , Blood Glucose/metabolism , Body Weight/drug effects , Cardiomegaly/blood , Cardiomegaly/etiology , Cardiomegaly/prevention & control , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/blood , Diabetic Cardiomyopathies/etiology , Diet, High-Fat , Endoplasmic Reticulum Chaperone BiP , Heart/drug effects , Male , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects
4.
Front Pharmacol ; 11: 561306, 2020.
Article in English | MEDLINE | ID: mdl-33041800

ABSTRACT

AIMS: SUMOylation is a post-translational modification that plays a crucial role in the cellular stress response. We aimed to demonstrate whether and how the SUMO E2 conjugation enzyme Ubc9 affects acute myocardial ischemic (MI) injury. METHODS AND RESULTS: Adenovirus expressing Ubc9 was administrated by multipoint injection in the border zone of heart immediately after MI in C57BL/6 mice. Neonatal rat cardiomyocytes (NRCMs) were also infected, followed by oxygen and glucose deprivation (OGD). In vivo, Ubc9 adenovirus-injected mice showed decreased cardiomyocyte apoptosis, reduced myocardial fibrosis, and improved cardiac function post-MI. In vitro, overexpression of Ubc9 decreased cardiomyocyte apoptosis, whereas silence of Ubc9 showed the opposite results during OGD. We next found that Ubc9 significantly decreased the accumulation of autophagy marker p62/SQSTM, while the LC3 II level hardly changed. When in the presence of bafilomycin A1 (BAF), the Ubc9 adenovirus plus OGD group presented a higher level of LC3 II and GFP-LC3 puncta than the OGD group. Moreover, the Ubc9 adenovirus group displayed increased numbers of yellow plus red puncta and a rising ratio of red to yellow puncta on the mRFP-GFP-LC3 fluorescence assay, indicating that Ubc9 induces an acceleration of autophagic flux from activation to degradation. Mechanistically, Ubc9 upregulated SUMOylation of the core proteins Vps34 and Beclin1 in the class III phosphatidylinositol 3-kinase (PI3K-III) complexes and boosted the protein assembly of PI3K-III complex I and II under OGD. Moreover, the colocalization of Vps34 with autophagosome marker LC3 or lysosome marker Lamp1 was augmented after Ubc9 overexpression, indicating a positive effect of Ubc9-boosted protein assembly of the PI3K-III complexes on autophagic flux enhancement. CONCLUSIONS: We uncovered a novel role of Ubc9 in protecting cardiomyocytes from ischemic stress via Ubc9-induced SUMOylation, leading to increased PI3K-III complex assembly and autophagy-positioning. These findings may indicate a potential therapeutic target, Ubc9, for treatment of myocardial ischemia.

5.
Free Radic Biol Med ; 160: 820-836, 2020 11 20.
Article in English | MEDLINE | ID: mdl-32950688

ABSTRACT

Brahma-related gene 1 (BRG1) regulates the chromatin structure and expression of cardiac genes. Although BRG1 is downregulated in adult cardiomyocytes, it is reactivated during cardiac stress. The role of BRG1 in acute myocardial infarction (AMI) has not been clearly defined. This study assessed the protective role of BRG1 in AMI using cell cultures and an animal model and explored the underlying molecular events. The results showed that in the peri-infarct zone, expression of BRG1 protein was significantly increased relative to the sham group, which was accompanied by NRF2 and HO1 upregulation and KEAP1 downregulation. BRG1 overexpression through adenoviral intramyocardial injection into AMI mice reduced the infarct size and improved cardiac functions with upregulation of NRF2 and its target HO1 and attenuated oxidative damage and cell apoptosis. However, shRNA-mediated Brg1 knockdown had the opposite effects. These results were further confirmed in cultured primary neonatal rat cardiomyocytes (NRCMs) with oxygen-glucose deprivation (OGD). Moreover, the selective NRF2 inhibitor brusatol could partially reverse cardiomyocyte antioxidant ability and BRG1 overexpression-induced cardiac protection in vitro. In addition, co-immunoprecipitation and immunofluorescence data showed that BRG1 overexpression significantly promoted the BRG1/NRF2 co-localization in cardiomyocytes. The chromatin immunoprecipitation-qPCR revealed BRG1 interaction with the Ho1 promoter and BRG1 overexpression could induce BRG1 binding to the Ho1 promoter during the OGD. In conclusion, this study demonstrated that BRG1 upregulation during AMI in vitro and in vivo increased the NRF2 level and NRF2 nuclear accumulation for HO1 expression to alleviate cardiac myocyte oxidative stress and upregulate cardiomyocyte viability. The BRG1-NRF2-HO1 pathway may represent a novel therapeutic target in the prevention of cardiac dysfunction in AMI patients.


Subject(s)
DNA Helicases , Myocardial Infarction , NF-E2-Related Factor 2 , Nuclear Proteins , Oxidative Stress , Transcription Factors , Animals , Apoptosis , Cell Line , Heme Oxygenase-1 , Kelch-Like ECH-Associated Protein 1/genetics , Membrane Proteins , Mice , Myocardial Infarction/genetics , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Rats , Signal Transduction
6.
Biomed Pharmacother ; 125: 109825, 2020 May.
Article in English | MEDLINE | ID: mdl-32036208

ABSTRACT

Vascular complications induced by diabetes constitute the principal cause of morbidity and mortality in diabetic patients. It has been reported that carvacrol (CAR) possesses a wide range of biological activities. The effects of CAR on diabetes-induced vasculopathy remain unknown. In this study, diabetic mice were created by the intraperitoneal injection of streptozotocin (STZ) in male C57BL/6 J mice to investigate whether CAR provided a protective effect against diabetes-induced vasculopathy and to investigate the underlying mechanisms. We found that CAR decreased blood glucose levels in diabetic mice. Moreover, CAR ameliorated diabetes-induced aortic morphological alterations, as evidenced by an increased thickness in the intima-media width and an increased number of vascular smooth muscle cells (VSMCs) layers. Further studies revealed that CAR inhibited hypercontractility in the aortas of diabetic mice and VSMCs in response to hyperglycemia, as evidenced by the relaxation of phenylephrine(PE)-induced vasoconstriction, the decreased expression of smooth muscle (SM)-α-actin, and the increased expression of Ki67 and proliferating cell nuclear antigen (PCNA). Furthermore, the PI3K/Akt signaling pathway was inhibited in the aortas of diabetic mice and VSMCs in response to hyperglycemia, while CAR treatment activated the PI3K/Akt signaling pathway. In conclusion, our results strongly suggest that CAR plays a protective role in diabetes-induced aortic hypercontractility, possibly by activating the PI3K/Akt signaling pathway. CAR is a potential drug for the treatment of diabetic vasculopathy.


Subject(s)
Aorta/drug effects , Cymenes/pharmacology , Diabetes Mellitus, Experimental/complications , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Blood Glucose/drug effects , Contractile Proteins/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Animal , Muscle, Smooth, Vascular/drug effects , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction
7.
Biochem Biophys Res Commun ; 524(3): 629-635, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32029275

ABSTRACT

AIMS: Endothelial progenitor cells (EPCs) are widely accepted to be applied in ischemic diseases. However, the therapeutic potency is largely impeded because of its inviability in these ischemic conditions. Autophagy is recognized to be vital in cell activity. Therefore, we explore the role and the mechanism of autophagy in ischemic EPCs. METHODS AND RESULTS: We applied 7d-cultured bone marrow EPCs to investigate the autophagy status under the oxygen and glucose deprivation (OGD) conditions in vitro, mimicking the in-vivo harsh ischemia and anoxia microenvironment. We found increased EPC apoptosis, accompanied by an impaired autophagy activation. Intriguingly, mTOR inhibitor Rapamycin was incapable to reverse this damped autophagy and EPC damage. We further found that autophagy pathway downstream Vps34-Beclin1-Atg14 complex assembly and activity were impaired in OGD conditions, and an autophagy-inducing peptide Tat-Beclin1 largely recovered the impaired complex activity and attenuated OGD-stimulated EPC injury through restoring autophagy activation. CONCLUSIONS: The present study discovered that autophagy activation is inhibited when EPCs located in the ischemia and anoxia conditions. Restoration of Vps34 complex activity obtains sufficient autophagy, thus promoting EPC survival, which will provide a potential target and advance our understanding of autophagy manipulation in stem cell transplantation.


Subject(s)
Autophagy , Class III Phosphatidylinositol 3-Kinases/metabolism , Endothelial Progenitor Cells/metabolism , Endothelial Progenitor Cells/pathology , Ischemia/pathology , Animals , Apoptosis/drug effects , Autophagy/drug effects , Beclin-1/metabolism , Endothelial Progenitor Cells/drug effects , Glucose/deficiency , Male , Mice, Inbred C57BL , Oxygen , Sirolimus/pharmacology , tat Gene Products, Human Immunodeficiency Virus/metabolism
8.
Front Pharmacol ; 10: 998, 2019.
Article in English | MEDLINE | ID: mdl-31572181

ABSTRACT

Background: Diabetic cardiomyopathy (DCM), a common complication of diabetes mellitus, eventually leads to heart failure. Carvacrol is a food additive with diverse bioactivities. We aimed to study the protective effects and mechanisms of carvacrol in DCM. Methods: We used a streptozotocin-induced and db/db mouse model of types 1 and 2 diabetes mellitus (T1DM and T2DM), respectively. Both study groups received daily intraperitoneal injections of carvacrol for 6 weeks. Cardiac remodeling was evaluated by histological analysis. We determined gene expression of cardiac remodeling markers (Nppa and Myh7) by quantitative real-time PCR and cardiac function by echocardiography. Changes of PI3K/AKT signaling were determined with Western blotting. GLUT4 translocation was evaluated by Western blotting and immunofluorescence staining. Results: Compared with control mice, both T1DM and T2DM mice showed cardiac remodeling and left ventricular dysfunction. Carvacrol significantly reduced blood glucose levels and suppressed cardiac remodeling in mice with T1DM and T2DM. At the end of the treatment period, both T1DM and T2DM mice showed lesser cardiac hypertrophy, Nppa and Myh7 mRNA expressions, and cardiac fibrosis, compared to mice administered only the vehicle. Moreover, carvacrol significantly restored PI3K/AKT signaling, which was impaired in mice with T1DM and T2DM. Carvacrol increased levels of phosphorylated PI3K, PDK1, AKT, and AS160 and inhibited PTEN phosphorylation in mice with T1DM and T2DM. Carvacrol treatment promoted GLUT4 membrane translocation in mice with T1DM and T2DM. Metformin was used as the positive drug control in T2DM mice, and carvacrol showed comparable effects to that of metformin on cardiac remodeling and modulation of signaling pathways. Conclusion: Carvacrol protected against DCM in mice with T1DM and T2DM by restoring PI3K/AKT signaling-mediated GLUT4 membrane translocation and is a potential treatment of DCM.

9.
Int J Mol Med ; 44(3): 1091-1105, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31524224

ABSTRACT

Damaged endothelial progenitor cells (EPCs) are associated with poor prognosis in diabetic myocardial infarction (DMI). Our previous studies revealed that an impaired Sonic hedgehog (Shh) pathway contributes to insufficient function in diabetic EPCs; however, the roles of the Shh pathway in diabetic EPC apoptosis under basal and hypoxic/ischemic conditions remain unknown. Therefore, the present study investigated whether Shh revitalized diabetic EPCs and consequently improved the deteriorative status of DMI. For this purpose, streptozotocin injection was used in male C57/BL6 mice to induce type­1 diabetes, and diabetic EPCs were isolated from the bone marrow. Apoptosis, cell function, and protein expression were investigated in EPCs in vitro. Mouse hearts were injected with adenovirus Shh­modified diabetic EPCs (DM­EPCShh) or control DM­EPCNull immediately after coronary artery ligation in vivo. Cardiac function, capillary numbers, fibrosis, and cell apoptosis were then detected. First, the in vitro results demonstrated that the apoptosis of diabetic EPCs was reduced following treatment with Shh protein for 24 h, under normal or hypoxic conditions. BMI1 proto­oncogene (Bmi1), an antiapoptotic protein found in several cells, was reduced in diabetic EPCs under normal or hypoxic conditions, but was upregulated after Shh protein stimulation. When Bmi1­siRNA was administered, the antiapoptotic effect of Shh protein was significantly reversed. In addition, p53, a Bmi1­targeted gene, was demonstrated to mediate the antiapoptotic effect of the Shh/Bmi1 pathway in diabetic EPCs. The Shh/Bmi1/p53 axis also enhanced the diabetic EPC function. In vivo, Shh­modified diabetic EPCs exhibited increased EPC retention and decreased apoptosis at 3 days post­DMI. At 14 days post­DMI, these cells presented enhanced capillary density, reduced myocardial fibrosis and improved cardiac function. In conclusion, the present results demonstrated that the Shh pathway restored diabetic EPCs through the Shh/Bmi1/p53 axis, suppressed myocardial apoptosis and improved myocardial angiogenesis, thus reducing cardiac fibrosis and finally restoring myocardial repair and cardiac function in DMI. Thus, the Shh pathway may serve as a potential target for autologous cell therapy in diabetic myocardial ischemia.


Subject(s)
Endothelial Progenitor Cells/metabolism , Gene Expression Regulation , Hedgehog Proteins/metabolism , Myocardial Infarction/etiology , Myocardial Infarction/metabolism , Animals , Apoptosis/genetics , Biomarkers , Biopsy , Bone Marrow Cells/metabolism , Diabetes Mellitus, Experimental , Echocardiography , Gene Silencing , Hypoxia , Immunohistochemistry , Male , Mice , Models, Biological , Myocardial Infarction/diagnosis , RNA, Small Interfering/genetics , Signal Transduction
10.
Am J Transl Res ; 11(8): 5065-5075, 2019.
Article in English | MEDLINE | ID: mdl-31497222

ABSTRACT

Decreased autophagy has been reported to contribute to the progression of cardiac hypertrophy. Our previous research has demonstrated that endophilin A2 (EndoA2) attenuates H2O2-induced cardiomyocyte apoptosis by strengthening autophagy. However, the role of EndoA2 in the regulation of autophagy in cardiac hypertrophy is unknown. In this study, we tested the hypothesis that EndoA2 suppresses cardiac hypertrophy induced by isoproterenol (ISO) by activating autophagy. In vivo, we established a cardiac hypertrophy model by subcutaneous injection of ISO and used intramyocardial delivery of adenovirus vector harboring EndoA2 cDNA (Ad-EndoA2) to overexpress EndoA2. The cardiac hypertrophic response and autophagy level were measured. EndoA2 overexpression suppressed pathological cardiac hypertrophy and enhanced autophagy in rat hearts. In addition, the effects of EndoA2 on cardiac hypertrophy and autophagy were observed in cultured neonatal rat cardiomyocytes (NRCMs) with gain- and loss-of-function approaches to regulate EndoA2 expression. The results were consistent with those of the in vivo study. Furthermore, the involvement of EndoA2-mediated autophagy in the attenuation of ISO-induced cardiac hypertrophy was explored by pharmaceutical inhibition of autophagy. Pretreatment with 3-methyladenine (3-MA) clearly diminished the anti-hypertrophic effects of EndoA2 in ISO-treated NRCMs. The results presented here provide the first evidence that EndoA2 is involved in ISO-induced cardiac hypertrophy. The anti-hypertrophic effects of EndoA2 can be partially attributed to its regulation of autophagy.

11.
Acta Pharmacol Sin ; 40(8): 1019-1028, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30792486

ABSTRACT

Minocycline is a tetracycline antibiotic and has been shown to play a protective role in cerebral and myocardial ischemia/reperfusion (I/R). However, the underlying mechanism remains unclear. Herein, we investigated whether monocyte chemotactic protein-induced protein-1 (MCPIP1), a negative regulator of inflammation, was involved in the minocycline-induced cardioprotection in myocardial I/R in vivo and in vitro models. Myocardial ischemia was induced in rats by left anterior descending coronary artery occlusion for 1 h and followed by 48 h reperfusion. Minocycline was administered prior to ischemia (45 mg/kg, ip, BID, for 1 d) and over the course of reperfusion (22.5 mg/kg, ip, BID, for 2 d). Cardiac function and infarct sizes were assessed. Administration of minocycline significantly decreased the infarct size, alleviated myocardial cell damage, elevated left ventricle ejection fraction, and left ventricle fractional shortening following I/R injury along with significantly decreased pro-inflammatory cytokine IL-1ß and monocyte chemoattractant protein-1 (MCP-1) levels in heart tissue. H9c2 cardiomyocytes were subjected to oxygen glucose deprivation (OGD) followed by reoxygenation (OGD/R). Pretreatment with minocycline (1-50 µmol/L) dose-dependently increased the cell viability and inhibited OGD/R-induced expression of MCP-1 and IL-6. Furthermore, minocycline dose-dependently inhibited nuclear translocation of NF-κB p65 in H9c2 cells subjected to OGD/R. In both the in vivo and in vitro models, minocycline significantly increased MCPIP1 protein expression; knockdown of MCPIP1 with siRNA in H9c2 cells abolished all the protective effects of minocycline against OGD/R-induced injury. Our results demonstrate that minocycline alleviates myocardial I/R injury via upregulating MCPIP1, then subsequently inhibiting NF-κB activation and pro-inflammatory cytokine secretion.


Subject(s)
Cardiotonic Agents/pharmacology , Minocycline/pharmacology , Myocardial Reperfusion Injury/prevention & control , NF-kappa B/antagonists & inhibitors , Ribonucleases/metabolism , Animals , Cell Line , Cytokines/metabolism , Male , Rats, Sprague-Dawley , Ribonucleases/genetics , Up-Regulation
12.
J Cell Biochem ; 119(10): 8290-8303, 2018 11.
Article in English | MEDLINE | ID: mdl-29923351

ABSTRACT

Cardiac hypertrophy is one of the major risk factors for chronic heart failure. The role of endophilinA2 (EndoA2) in clathrin-mediated endocytosis and clathrin-independent endocytosis is well documented. In the present study, we tested the hypothesis that EndoA2 protects against angiotensin II (Ang II)-induced cardiac hypertrophy by mediating intracellular angiotensin II type 1 receptor (AT1-R) trafficking in neonatal rat cardiomyocytes (NRCMs). Cardiac hypertrophy was evaluated by using cell surface area and quantitative RT-PCR (qPCR) analyses. For the first time, we found that EndoA2 attenuated cardiac hypertrophy and fibrosis induced by Ang II. Moreover, EndoA2 inhibited apoptosis induced by excessive endoplasmic reticulum stress (ERS), which accounted for the beneficial effects of EndoA2 on cardiac hypertrophy. We further revealed that there was an interaction between EndoA2 and AT1-R.The expression levels of EndoA2, which inhibits AT1-R transport from the cytoplasm to the membrane, and the interaction between EndoA2 and AT1-R were obviously decreased after Ang II treatment. Furthermore, Ang II inhibited the co-localization of AT1-R with GRP-78, which was reversed by EndoA2 overexpression. In conclusion, our results suggested that EndoA2 plays a role in protecting against cardiac hypertrophy induced by Ang II, possibly by inhibiting AT1-R transport from the cytoplasm to the membrane to suppress signal transduction.


Subject(s)
Acyltransferases/genetics , Angiotensin II/genetics , Cardiomegaly/prevention & control , Myocytes, Cardiac/metabolism , Receptor, Angiotensin, Type 1/genetics , Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Adenoviridae/genetics , Adenoviridae/metabolism , Angiotensin II/metabolism , Angiotensin II/pharmacology , Animals , Animals, Newborn , Apoptosis/genetics , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/physiopathology , Endoplasmic Reticulum Stress/genetics , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Primary Cell Culture , Protein Transport , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/metabolism , Signal Transduction , Transfection
13.
Biochem Biophys Res Commun ; 499(2): 299-306, 2018 05 05.
Article in English | MEDLINE | ID: mdl-29574155

ABSTRACT

Apoptosis plays a critical role in normal embryonic development and tissue homeostasis regulation. EndophilinA2 (EndoA2) is widely reported to regulate endocytosis. Additionally, EndoA2 has been demonstrated to be involved in tumor metastasis, neuroregulation and vascular function. In this study, we used siRNA and Ad-EndoA2 transfection strategy to investigate whether EndoA2 provides a protective effect against apoptosis induced by H2O2 in H9C2 cardiomyocytes and the underlying mechanisms. We found that EndoA2 siRNA knockdown promoted H2O2-induced apoptosis in H9C2 cardiomyocytes, evidenced by decreased cell number, increased apoptotic cells, and activation of caspase-3. In contrast, EndoA2 overexpression showed the opposite effects and inhibited H2O2-induced apoptosis in H9C2 cardiomyocytes. Further studies revealed that EndoA2 overexpression strengthened autophagy, evidenced by the increased LC3 II/I ratio and P62 degradation, whereas EndoA2 siRNA knockdown produced the opposite effects. Furthermore, we revealed that there was an interaction between Bif-1 and Beclin-1. Upon H2O2 treatment, the association of Bif-1 and Beclin-1 remarkably increased. EndoA2 overexpression further promoted the binding of Bif-1 with Beclin-1, whereas EndoA2 siRNA knockdown reduced this association. These data strongly suggested that EndoA2 inhibited H2O2-induced apoptosis in H9C2 cardiomyocytes, possibly by promoting Bif-1 to form a complex with Beclin-1 and strengthening autophagy. This study provides a novel target for heart diseases.


Subject(s)
Acyltransferases/metabolism , Apoptosis/drug effects , Autophagy/drug effects , Cardiotonic Agents/metabolism , Hydrogen Peroxide/toxicity , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Beclin-1/metabolism , Myocytes, Cardiac/drug effects , Protein Binding/drug effects , Rats
14.
Naunyn Schmiedebergs Arch Pharmacol ; 390(5): 535-545, 2017 May.
Article in English | MEDLINE | ID: mdl-28210753

ABSTRACT

This study aimed to investigate the anti-oxidant and anti-hypertrophic effects of puerarin-7-O-glucuronide, a water-soluble puerarin metabolite. The anti-oxidant effects of puerarin-7-O-glucuronide were assessed by measurement of intracellular superoxide levels, total superoxide dismutase (SOD) activity, total anti-oxidant capacity, and glutathione (GSH)/glutathione disulfide (GSSG) ratio in cultured neonatal rat cardiomyocytes (NRCMs) stimulated with the xanthine oxidase (XO)/xanthine (X) system or angiotensin II. The activity of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and expression of NADPH oxidase subunits p22phox and p47phox were determined. The anti-hypertrophic effects of puerarin-7-O-glucuronide in angiotensin II-challenged NRCMs were characterized by changes in cell morphology and expression of hypertrophic genes. In the pharmacokinetic study, the plasma concentration of puerarin-7-O-glucuronide was determined by rapid resolution-liquid chromatography-tandem mass spectrometry (RR-LC-MS/MS). Puerarin-7-O-glucuronide prevented XO/X-induced increase in intracellular superoxide production and decreases in total SOD activity, GSH/GSSG ratio, and total anti-oxidant capacity. Puerarin-7-O-glucuronide also reversed angiotensin II-induced increases in intracellular superoxide production and NADPH oxidase activity and decreases in total SOD activity. These anti-oxidant effects of puerarin-7-O-glucuronide were accompanied by downregulation of p22phox and p47phox. Furthermore, puerarin-7-O-glucuronide prevented angiotensin II-induced increases in cell surface area and perimeter, as well as changes in Nppa, Myh7, and Myh6. In the pharmacokinetic study, puerarin-7-O-glucuronide was cleared with a half-life of 0.94 h after intravenous administration. Puerarin could be detected in rat plasma, albeit in low concentration, as early as 5 min after intravenous administration of puerarin-7-O-glucuronide. These anti-oxidant and anti-hypertrophic properties of puerarin-7-O-glucuronide were similar to those of its parent compound puerarin. These results support the development of puerarin-7-O-glucuronide as a novel pharmaceutical agent for therapeutic application.


Subject(s)
Angiotensin II/toxicity , Antioxidants/pharmacology , Cardiomegaly/prevention & control , Glucuronides/pharmacology , Isoflavones/pharmacology , Myocytes, Cardiac/drug effects , Oxidative Stress/drug effects , Solvents/chemistry , Water/chemistry , Animals , Animals, Newborn , Antioxidants/administration & dosage , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Cardiomegaly/chemically induced , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , Female , Glucuronides/administration & dosage , Glucuronides/chemistry , Glucuronides/pharmacokinetics , Glutathione/metabolism , Glutathione Disulfide/metabolism , Injections, Intravenous , Isoflavones/administration & dosage , Isoflavones/chemistry , Isoflavones/pharmacokinetics , Male , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Rats, Sprague-Dawley , Solubility , Superoxide Dismutase/metabolism , Superoxides/metabolism , Xanthine/pharmacology , Xanthine Oxidase/pharmacology
15.
Acta Cardiol Sin ; 32(6): 723-730, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27899860

ABSTRACT

BACKGROUND: Leptin has been identified as an important protein involved in obesity. As a chronic metabolic disorder, obesity is associated with a high risk of developing cardiovascular and metabolic diseases, including heart failure. The aim of this paper was to investigate the effects and the mechanism of leptin on the contractile function of cardiomyocytes in the adult rat. METHODS: Isolated adult rat cardiomyocytes were exposed to leptin (1, 10, and 100 nmol/L) for 1 hour. The calcium transients and the contraction of adult rat cardiomyocytes were recorded with SoftEdge MyoCam system. Apocynin, tempol and rapamycin were added respectively, and Western blotting was employed to evaluate the expression of LC3B and Beclin-1. RESULTS: The peak shortening and maximal velocity of shortening/relengthening (± dL/dtmax) of cell shortening were significantly decreased, and the time to 50% relengthening was prolonged with leptin perfusion. Leptin also significantly reduced the baseline, peak and time to 50% baseline of calcium transient. Leptin attenuated autophagy as indicated by decreased LC3-II and Beclin-1. All of the abnormalities were significantly attenuated by apocynin, tempol or rapamycin. CONCLUSIONS: Our results indicated that leptin depressed the intracellular free calcium and myocardial systolic function via increasing oxidative stress and inhibiting autophagy.

16.
Drug Des Devel Ther ; 10: 2729-37, 2016.
Article in English | MEDLINE | ID: mdl-27621594

ABSTRACT

Diabetes is a potent risk factor for heart failure with preserved ejection fraction (HFpEF). Autophagy can be activated under pathological conditions, including diabetic cardiomyopathy. The therapeutic effects of chloroquine (CQ), an autophagy inhibitor, on left ventricle function in streptozotocin (STZ)-induced diabetic mice were investigated. The cardiac function, light chain 3 (LC3)-II/LC3-I ratio, p62, beclin 1, reactive oxygen species, apoptosis, and fibrosis were measured 14 days after CQ (ip 60 mg/kg/d) administration. In STZ-induced mice, cardiac diastolic function was decreased significantly with normal ejection fraction. CQ significantly ameliorated cardiac diastolic function in diabetic mice with HFpEF. In addition, CQ decreased the autophagolysosomes, cardiomyocyte apoptosis, and cardiac fibrosis but increased LC3-II and p62 expressions. These results suggested that CQ improved the cardiac diastolic function by inhibiting autophagy in STZ-induced HFpEF mice. Autophagic inhibitor CQ might be a potential therapeutic agent for HFpEF.


Subject(s)
Chloroquine/pharmacology , Chloroquine/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetic Cardiomyopathies/drug therapy , Heart Ventricles/drug effects , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetic Cardiomyopathies/metabolism , Heart Ventricles/pathology , Male , Mice , Mice, Inbred C57BL , Streptozocin , Ventricular Function, Left
17.
Mol Cell Endocrinol ; 423: 30-9, 2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26773732

ABSTRACT

The Sonic hedgehog (Shh) pathway is downregulated in type 1 diabetes, and it has been reported that augmentation of this pathway may alleviate diabetic complications. However, the cellular mechanisms underlying these protective effects are poorly understood. Recent studies indicate that impaired function of endothelial progenitor cells (EPCs) may contribute to cardiovascular problems in diabetes. We hypothesized that impaired Shh signaling contribute to endothelial progenitor cell dysfunction and that activating the Shh signaling pathway may rescue EPC function and promote diabetic neovascularization. Adult male C57/B6 mice and streptozotocin (STZ)-induced type 1 diabetic mice were used. Gli1 and Ptc1 protein levels were reduced in EPCs from diabetic mice, indicating inhibition of the Shh signaling pathway. EPC migration, tube formation ability, and mobilization were impaired in diabetic mice compared with non-diabetic controls (p < 0.05 vs control), and all were improved by in vivo administration of the Shh pathway receptor agonist SAG (p < 0.05 vs diabetes). SAG significantly increased capillary density and blood perfusion in the ischemic hindlimbs of diabetic mice (p < 0.05 vs diabetes). The AKT activity was lower in EPCs from diabetic mice than those from non-diabetic controls (p < 0.05 vs control). This decreased AKT activity led to an increased GSK-3ß activity and degradation of the Shh pathway transcription factor Gli1/Gli2. SAG significantly increased the activity of AKT in EPCs. Our data clearly demonstrate that an impaired Shh pathway mediated by the AKT/GSK-3ß pathway can contribute to EPC dysfunction in diabetes and thus activating the Shh signaling pathway can restore both the number and function of EPCs and increase neovascularization in type 1 diabetic mice.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetic Angiopathies/metabolism , Endothelial Progenitor Cells/physiology , Hedgehog Proteins/physiology , Neovascularization, Physiologic , Animals , Cells, Cultured , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Type 1/complications , Diabetic Angiopathies/pathology , Hindlimb/blood supply , Ischemia/metabolism , Ischemia/physiopathology , Male , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
18.
Exp Ther Med ; 10(5): 1750-1758, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26640546

ABSTRACT

Our previous study demonstrated that an impaired sonic hedgehog (Shh) pathway contributed to cardiac dysfunction in type 1 diabetic mice with myocardial infarction (MI). The present study aimed to test the hypothesis that oxidative stress may contribute to the impaired Shh pathway and cardiac dysfunction in type 1 diabetic mice with MI. Streptozotocin-induced type 1 diabetic mice (C57/Bl6, male) and rat neonatal cardiomyocytes were used in the present study. Mice were randomly assigned to undergo ligation of the coronary artery or pseudosurgery. A potent antioxidant Tempol was administered in vivo and in vitro. Cardiac function was assessed by echocardiography, capillary density by immunohistochemisty, percentage of myocardial infarct using Massons trichrome staining, reactive oxygen species detection using dihydroethidium dye or 2,7-dichlorofluorescein diacetate probe and protein expression levels of the Shh pathway by western blot analysis. The antioxidant Tempol was shown to significantly increase myocardial protein expression levels of Shh and patched-1 (Ptc1) at 7-18 weeks and improved cardiac function at 18 weeks in type 1 diabetic mice, as compared with mice receiving no drug treatment. Furthermore, myocardial protein expression levels of Shh and Ptc1 were significantly upregulated on day 7 after MI, and capillary density was enhanced. In addition, the percentage area of myocardial infarct was reduced, and the cardiac dysfunction and survival rate were improved on day 21 in diabetic mice treated with Tempol. In vitro, treatment of rat neonatal cardiomyocytes with a mixture of xanthine oxidase and xanthine decreased protein expression levels of Shh and Ptc1 in a concentration-dependent manner, and Tempol attenuated this effect. These results indicate that oxidative stress may contribute to an impaired Shh pathway in type 1 diabetic mice, leading to diminished myocardial healing and cardiac dysfunction. Antioxidative strategies aimed at restoring the endogenous Shh pathway may offer a useful means for improving diabetic cardiac function.

19.
Biochem Biophys Res Commun ; 457(3): 419-25, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25582777

ABSTRACT

Sonic hedgehog (Shh) pathway has been reported to protect cardiomyocytes in myocardial infarction (MI), but the underlying mechanism is not clear. Here, we provide evidence that Shh pathway induces cardiomyocytes survival through AMP-activated protein kinase-dependent autophagy. Shh pathway agonist SAG increased the expression of LC3-II, and induced the formation of autophagosomes in cultured H9c2 cardiomyocytes under oxygen glucose deprivation (OGD) 1 h and 4 h. Moreover, SAG induced a profound AMP-activated protein kinase (AMPK) activation, and then directly phosphorylated and activated the downstream autophagy initiator Ulk1, independent of the autophagy suppressor mammalian target of rapamycin (mTOR) complex 1. Taken together, our results have shown that Shh activates AMPK-dependent autophagy in cardiomyocytes under OGD, suggesting a role of autophagy in Shh-induced cellular protection.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Autophagy/physiology , Hedgehog Proteins/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Animals , Cardiotonic Agents/metabolism , Cell Hypoxia , Cell Line , Cell Survival/physiology , Glucose/deficiency , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Rats , Signal Transduction
20.
Int J Nanomedicine ; 8: 933-40, 2013.
Article in English | MEDLINE | ID: mdl-23486407

ABSTRACT

Puerarin has multiple pharmacological effects and is widely prescribed for patients with cardiovascular diseases including hypertension, cerebral ischemia, myocardial ischemia, diabetes mellitus, and arteriosclerosis. We have successfully prepared puerarin-loaded solid lipid nanoparticles (Pue-SLNs) for oral administration. Pue-SLNs are prepared using monostearin, soya lecithin, and poloxamer 188. SLNs may alter the course of puerarin absorption predominantly to and through lymphatic routes and regions, presumably following a transcellular path of lipid absorption, especially by enterocytes and polar epithelial cells of the intestine. The alteration of absorption might influence the metabolic profile of puerarin when incorporated into SLNs. In the present study, we investigated the metabolic profile of puerarin in rat plasma and urine using rapid resolution liquid chromatography-tandem mass spectrometry after a single-dose intragastric administration of Pue-SLNs in comparison with puerarin suspension. Two glucuronidated metabolites of puerarin, puerarin-4'-O-glucuronide and puerarin-7-O-glucuronide, were detected in rat plasma and urine after intragastric administration of Pue-SLNs, with the latter acting as the major metabolite. Similar results were found in rat plasma and urine after intragastric administration of puerarin suspension. The results suggest that incorporation of puerarin into SLNs does not change either the position of glucuronidation or the metabolic pathway of puerarin in rats.


Subject(s)
Isoflavones/metabolism , Lipids/administration & dosage , Nanoparticles/administration & dosage , Absorption , Animals , Female , Glucuronides/blood , Glucuronides/metabolism , Glucuronides/urine , Isoflavones/administration & dosage , Isoflavones/blood , Isoflavones/urine , Lipids/chemistry , Male , Metabolome , Nanoparticles/chemistry , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...