Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 160
Filter
Add more filters











Publication year range
1.
J Anim Sci Biotechnol ; 15(1): 127, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39261875

ABSTRACT

BACKGROUND: Addressing the shortage of high-quality protein resources, this study was conducted to investigate the effects of replacing soybean meal (SBM) with different levels of enzymolysis-fermentation compound protein feed (EFCP) in the diets of growing-finishing pigs, focusing on growth performance, nutrients digestibility, carcass traits, and meat quality. METHODS: Sixty DLY (Duroc × Landrace × Yorkshire) pigs with an initial body weight of 42.76 ± 2.05 kg were assigned to 5 dietary treatments in a 2 × 2 + 1 factorial design. These dietary treatments included a corn-soybean meal diet (CON), untreated compound protein feed (UCP) substitution 50% (U50) and 100% SBM (U100) diets, and EFCP substitution 50% (EF50) and 100% SBM (EF100) diets. Each treatment had 6 pens (replicates) with 2 pigs per pen, and the experiment lasted 58 d, divided into phase I (1-28 d) and phase II (29-58 d). Following phase I, only the CON, U50, and EF50 groups were continued for phase II, each with 5 replicate pens. On d 59, a total of 15 pigs (1 pig/pen, 5 pens/treatment) were euthanized. RESULTS: During phase I, the EF50 group had a higher average daily gain (ADG) in pigs (P < 0.05) compared to the CON group, whereas the U50 group did not have a significant difference. As the substitution ratio of UCP and EFCP increased in phase I, there was a noticeable reduction in the final body weight and ADG (P < 0.05), along with an increase in the feed-to-gain ratio (F/G) (P < 0.05). In phase II, there were no significant differences in growth performance among the treatment groups, but EF50 increased the apparent digestibility of several nutrients (including dry matter, crude protein, crude fiber, acid detergent fiber, ash, gross energy) compared to U50. The EF50 group also exhibited significantly higher serum levels of neuropeptide Y and ghrelin compared to the CON and U50 groups (P < 0.05). Moreover, the EF50 group had higher carcass weight and carcass length than those in the CON and U50 groups (P < 0.05), with no significant difference in meat quality. CONCLUSIONS: The study findings suggest that replacing 50% SBM with EFCP during the growing-finishing period can improve the growth performance, nutrient digestibility, and carcass traits of pigs without compromising meat quality. This research offers valuable insights into the modification of unconventional plant protein meals and developing alternatives to SBM.

2.
Anim Nutr ; 18: 246-256, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39281048

ABSTRACT

The aim of this study was to investigate the reasons for the differences in lipid accumulation between lean and obese pigs. The bile acids with varying levels within two types of pigs were found and then in vitro experiments were conducted to identify whether these bile acids can directly affect lipid accumulation. Fourteen pigs, including seven lean and seven obese pigs with body weights of approximately 80 kg, were fed the same diet at an amount approximately equivalent to 3% of their respective body weights daily for 42 d. In vitro, 3T3-L1 preadipocytes were cultured in medium with high glucose levels and were differentiated into mature adipocytes using differentiation medium. Then, bile acids were added to mature adipocytes for 4 d. The results showed that there was a difference in body lipids levels and gut microbiota composition between obese and lean pigs (P < 0.05). According to the results of gut microbial function prediction, the bile acid biosynthesis in colonic digesta of obese pigs were different from that in lean pig. Sixty-five bile acids were further screened by metabolomics, of which 4 were upregulated (P < 0.05) and 2 were downregulated (P < 0.05) in obese pigs compared to lean pigs. The results of the correlation analysis demonstrated that chenodeoxycholic acid-3-ß-D-glucuronide (CDCA-3Gln) and ω-muricholic acid (ω-MCA) had a negative correlation with abdominal fat weight and abdominal fat rate, while isoallolithocholic acid (IALCA) was positively associated with crude fat in the liver and abdominal fat rate. There was a positive correlation between loin muscle area and CDCA-3Gln and ω-MCA (P < 0.05), however, IALCA and 3-oxodeoxycholic acid (3-oxo-DCA) were negatively associated with loin eye muscle area (P < 0.05). Isoallolithocholic acid increased the gene expression of peroxisome proliferator-activated receptor gamma (PPARG) and the number of lipid droplets (P < 0.05), promoting the lipid storage when IALCA was added to 3T3-L1 mature adipocytes in vitro. In conclusion, the concentration of bile acids, especially gut microbiota related-secondary bile acids, in obese pigs was different from that in lean pigs, which may contribute to lipid accumulation within obese pigs.

3.
Front Microbiol ; 15: 1442946, 2024.
Article in English | MEDLINE | ID: mdl-39135878

ABSTRACT

It is increasingly recognized that microplastics (MPs) are being transmitted through the food chain system, but little is known about the microorganisms involved in MP degradation, functional biodegradation genes, and metabolic pathways of degradation in the intestinal tract of foodborne animals. In this study, we explored the potential flora mainly involved in MP degradation in the intestinal tracts of Taoyuan, Duroc, and Xiangcun pigs by macrogenomics, screened relevant MP degradation genes, and identified key enzymes and their mechanisms. The pig colon was enriched with abundant MP degradation-related genes, and gut microorganisms were their main hosts. The fiber diet did not significantly affect the abundance of MP degradation-related genes but significantly reduced their diversity. We identified a total of 94 functional genes for MP degradation and classified them into 27 categories by substrate type, with polystyrene (PS), polyethylene terephthalate (PET), and di(2-ethylhexyl) phthalate (DEHP) were the most predominant degradation types. The MP degradation functional genes were widely distributed in a variety of bacteria, mainly in the phylum Firmicutes and Bacteroidetes. Based on the identified functional genes for MP degradation, we proposed a hypothetical degradation mechanism for the three major MP pollutants, namely, PS, PET, and DEHP, which mainly consist of oxidoreductase, hydrolase, transferase, ligase, laccase, and isomerase. The degradation process involves the breakdown of long polymer chains, the oxidation of short-chain oligomers, the conversion of catechols, and the achievement of complete mineralization. Our findings provide insights into the function of MP degradation genes and their host microorganisms in the porcine colon.

4.
J Agric Food Chem ; 72(36): 20091-20100, 2024 Sep 11.
Article in English | MEDLINE | ID: mdl-39189965

ABSTRACT

As the main coffee polyphenols, caffeoylquinic acids (CQAs) are abundant in coffee-derived products and have the potential to act as novel feed additives for animals. However, research on the side effects of dietary CQAs supplementation is scarce, especially in young animals. Here, we explore the safety of CQAs derived from green coffee beans. Results showed that ingesting 50, 125, 250, and 500 mg/kg of dietary CQAs for 55 days is associated with greater final body weight, average daily gain, and feed efficiency in piglets compared with the control group (P < 0.05). CQAs also increased the apparent digestibility of dry matter, crude protein, and gross energy at a dose over 50 mg/kg (P < 0.05). Interestingly, CQAs supplementation with 500 mg/kg increased the white blood cell count (P < 0.05). Moreover, CQAs supplementation at a dose over 50 mg/kg decreased the serum total cholesterol concentration but increased the immunoglobulin M level in serum (P < 0.05). Importantly, CQAs supplementation had no side effects on organ histopathology and organ weight (P > 0.05). These results suggest that CQAs could serve as a secure and effective additive to improve growth performance without negatively affecting the organs of piglets.


Subject(s)
Animal Feed , Coffea , Coffee , Polyphenols , Quinic Acid , Animals , Quinic Acid/analogs & derivatives , Quinic Acid/analysis , Polyphenols/administration & dosage , Polyphenols/chemistry , Swine/metabolism , Animal Feed/analysis , Coffea/chemistry , Coffee/chemistry , Dietary Supplements/analysis , Male , Female , Body Weight/drug effects
5.
J Anim Sci Biotechnol ; 15(1): 111, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39127747

ABSTRACT

BACKGROUND: Appropriate iron supplementation is essential for neonatal growth and development. However, there are few reports on the effects of iron overload on neonatal growth and immune homeostasis. Thus, the aim of this study was to investigate the effects of iron nutrition on neonatal growth and intestinal immunity by administering different levels of iron to neonatal pigs. RESULTS: We found that iron deficiency and iron overload resulted in slow growth in neonatal pigs. Iron deficiency and iron overload led to down-regulation of jejunum intestinal barrier and antioxidant marker genes, and promoted CD8+ T cell differentiation in jejunum and mesenteric lymph nodes (MLN) of pigs, disrupting intestinal health. Moreover, iron levels altered serum iron and tissue iron status leading to disturbances in redox state, affecting host innate and adaptive immunity. CONCLUSIONS: These findings emphasized the effect of iron nutrition on host health and elucidated the importance of iron in regulating redox state and immunity development. This study provided valuable insights into the regulation of redox state and immune function by iron metabolism in early life, thus contributing to the development of targeted interventions and nutritional strategies to optimize iron nutrition in neonates.

6.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39001695

ABSTRACT

To explore the effects of cordyceps militaris (CM) on growth performance and intestinal epithelium functions, 180 weaned pigs were randomly assigned into 5 treatments with 6 replicate pens per treatment (6 pigs per pen). Pigs were fed with basal diet (control) or basal diet supplemented with 100, 200, 400, and 800 mg/kg CM. The trial lasted for 42 d, and pigs from the control and optimal-dose groups (based on growth performance) were picked for blood and tissue collection (n = 6). Results showed that CM elevated the average daily gain (ADG) and decreased the ratio of feed intake to gain (F:G) in the weaned pigs (P < 0.05). CM supplementation at 100 mg/kg improved the digestibilities of dry matter (DM), crude protein (CP), and gross energy (GE) (P < 0.05). CM not only increased the activities of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) but also increased the concentration of interleukin-10 (IL-10) in serum (P < 0.05). The serum concentrations of malondialdehyde (MDA), d-lactate, and diamine oxidase (DAO) were reduced by CM (P < 0.05). Interestingly, CM elevated the villus height and the ratio of villus height to crypt depth in the duodenum and jejunum and increased the activities of duodenal sucrase and maltase (P < 0.05). Moreover, CM elevated the expression levels of tight-junction proteins ZO-1, claudin-1, and occluding, as well as critical functional genes such as the fatty acid transport protein (FATP1), cationic amino acid transporter 1 (CAT1), and NF-E2-related factor 2 (Nrf2) in the duodenum and jejunum (P < 0.05). Importantly, CM increased the concentrations of acetic acid and butyric acid, and elevated the abundances of Bacillus and Lactobacillus in the cecum and colon, respectively (P < 0.05). These results indicated potential benefits of CM in improving the growth of weaned pigs, and such effect may be tightly associated with improvement in antioxidant capacity and intestinal epithelium functions.


In last decades, antibiotics have been widely used as growth-promoting agents to relieve weaning stress and prevent intestinal injury. However, overdose and misuse of antibiotics led to bacterial resistance and drug residues in animal products. Therefore, the development of healthy alternatives for pork production has attracted considerable research interest worldwide. Cordyceps militaris (CM) is an entomopathogenic fungus with various biological effects, including anti-inflammatory, lipid-lowering, and antioxidant activities. This study was conducted to investigate the effects of dietary CM supplementation on growth performance, antioxidant capacity, and intestinal epithelium functions in weaned pigs. Our results showed that CM supplementation could enhance the growth performance by improving antioxidant capacity and intestinal epithelium functions.


Subject(s)
Animal Feed , Antioxidants , Cordyceps , Diet , Intestinal Mucosa , Animals , Cordyceps/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Antioxidants/metabolism , Swine/growth & development , Diet/veterinary , Animal Feed/analysis , Dietary Supplements/analysis , Weaning , Animal Nutritional Physiological Phenomena , Random Allocation , Male
7.
Front Vet Sci ; 11: 1351962, 2024.
Article in English | MEDLINE | ID: mdl-38689852

ABSTRACT

Virulence factors (VFs) are key factors for microorganisms to establish defense mechanisms in the host and enhance their pathogenic potential. However, the spectrum of virulence factors in pig colon and feces, as well as the influence of dietary and genetic factors on them, remains unreported. In this study, we firstly revealed the diversity, abundance and distribution characteristics of VFs in the colonic contents of different breeds of pigs (Taoyuan, Xiangcun and Duroc pig) fed with different fiber levels by using a metagenomic analysis. The analysis resulted in the identification of 1,236 virulence factors, which could be grouped into 16 virulence features. Among these, Taoyuan pigs exhibited significantly higher levels of virulence factors compared to Duroc pigs. The high-fiber diet significantly reduced the abundance of certain virulence factor categories, including iron uptake systems (FbpABC, HitABC) and Ig protease categories in the colon, along with a noteworthy decrease in the relative abundance of plasmid categories in mobile genetic elements (MGEs). Further we examined VFs in feces using absolute quantification. The results showed that high-fiber diets reduce fecal excretion of VFs and that this effect is strongly influenced by MGEs and short-chain fatty acids (SCFAs). In vitro fermentation experiments confirmed that acetic acid (AA) led to a decrease in the relative abundance of VFs (p < 0.1). In conclusion, our findings reveal for the first time how fiber diet and genetic factors affect the distribution of VFs in pig colon contents and feces and their driving factors. This information provides valuable reference data to further improve food safety and animal health.

8.
Anim Nutr ; 17: 110-122, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38766519

ABSTRACT

The use of next-generation probiotics (NGP) in pigs for combating diseases has been subject to limited research. Here we explored the potential of a well-known NGP candidate Akkermansia muciniphila targeting pig gut health. In the first screening experiment, we found that the abundance of A. muciniphila peaked at 14 d old but decreased at weaning (21 d old; P < 0.05), suggesting the weaning period may be an effective window for A. muciniphila intervention. Following that, 48 crossbred weaned pigs at 28 d old were randomly assigned to five groups: control (CON), high/low live A. muciniphila (HA/LA), and high/low heat-killed A. muciniphila (HIA/LIA). From 1 to 28 d old, the CON group received gastric infusion of anaerobic sterile saline every other day; the HA and LA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL live A. muciniphila, respectively; and the HIA and LIA groups were gavaged every other day with 1 × 1010 CFU/5 mL and 5 × 108 CFU/5 mL heat-killed A. muciniphila, respectively. At d 29, pigs in the CON group were randomly and equally divided into two groups, one of which was named the enterotoxigenic Escherichia coli (ETEC) group, and all groups except CON received a 5-d ETEC challenge. The supplementation of A. muciniphila numerically reduced the diarrhea rate of weaned pigs compared to the pigs that only received the ETEC challenge (P = 0.57), but the LIA group had a higher diarrhea rate than the CON group (P < 0.05). Consistent with this, the supplementation of A. muciniphila improved the small intestinal morphology and structure, proportion of CD4+ T lymphocytes in the blood, as well as the expression of genes related to intestinal barrier and antioxidant indices of pigs with ETEC challenge, especially for the LA group (P < 0.05). Meanwhile, A. muciniphila supplementation reduced the expression of ETEC virulence factor genes in the ileum and colon of pigs challenged by ETEC (P < 0.05). Therefore, A. muciniphila may protect the intestinal health of weaned piglets from damage caused by ETEC infection, but the effect may vary depending on the concentration and activity of A. muciniphila.

9.
Int J Biol Macromol ; 268(Pt 1): 131589, 2024 May.
Article in English | MEDLINE | ID: mdl-38643924

ABSTRACT

This study aimed to investigate the effect of Broussonetia papyrifera polysaccharides (BPP) on the jejunal intestinal integrity of rats ingesting oxidized fish oil (OFO) induced oxidative stress. Polysaccharides (Mw 16,956 Da) containing carboxyl groups were extracted from Broussonetia papyrifera leaves. In vitro antioxidant assays showed that this polysaccharide possessed antioxidant capabilities. Thirty-two male weaned rats were allocated into two groups orally infused BPP solution and PBS for 26 days, respectively. From day 9 to day 26, half of the rats in each group were fed food containing OFO, where the lipid peroxidation can induce intestinal oxidative stress. OFO administration resulted in diarrhea, decreased growth performance (p < 0.01), impaired jejunal morphology (p < 0.05) and antioxidant capacity (p < 0.01), increased the levels of ROS and its related products, IL-1ß and IL-17 (p < 0.01) of jejunum, as well as down-regulated Bcl-2/Bax (p < 0.01) and Nrf2 signaling (p < 0.01) of jejunum in rats. BPP gavage effectively alleviated the negative effects of OFO on growth performance, morphology, enterocyte apoptosis, antioxidant capacity and inflammation of jejunum (p < 0.05) in rats. In the oxidative stress model cell assay, the use of receptor inhibitors inhibited the enhancement of antioxidant capacity by BPP. These results suggested that BPP protected intestinal morphology, thus improving growth performance and reducing diarrhea in rats ingesting OFO. This protective effect may be attributed to scavenging free radicals and activating the Nrf2 pathway, which enhances antioxidant capacity, consequently reducing inflammation and mitigating intestinal cell death.


Subject(s)
Antioxidants , Broussonetia , Oxidative Stress , Plant Leaves , Polysaccharides , Animals , Oxidative Stress/drug effects , Polysaccharides/pharmacology , Polysaccharides/chemistry , Rats , Male , Plant Leaves/chemistry , Antioxidants/pharmacology , Broussonetia/chemistry , Jejunum/drug effects , Jejunum/metabolism , Jejunum/pathology , Intestines/drug effects , Intestines/pathology , Diet , Disease Models, Animal , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Reactive Oxygen Species/metabolism , Rats, Sprague-Dawley , Lipid Peroxidation/drug effects
10.
Elife ; 122024 Mar 05.
Article in English | MEDLINE | ID: mdl-38442142

ABSTRACT

Cytokine storms are associated with severe pathological damage and death in some diseases. Excessive activation of M1 macrophages and the subsequent secretion of pro-inflammatory cytokines are a major cause of cytokine storms. Therefore, promoting the polarization of M2 macrophages to restore immune balance is a promising therapeutic strategy for treating cytokine storm syndrome (CSS). This study was aimed at investigating the potential protective effects of leucine on lipopolysaccharide (LPS)-induced CSS in mice and exploring the underlying mechanisms. CSS was induced by LPS administration in mice, which were concurrently administered leucine orally. In vitro, bone marrow derived macrophages (BMDMs) were polarized to M1 and M2 phenotypes with LPS and interleukin-4 (IL-4), respectively, and treated with leucine. Leucine decreased mortality in mice treated with lethal doses of LPS. Specifically, leucine decreased M1 polarization and promoted M2 polarization, thus diminishing pro-inflammatory cytokine levels and ameliorating CSS in mice. Further studies revealed that leucine-induced macrophage polarization through the mechanistic target of rapamycin complex 1 (mTORC1)/liver X receptor α (LXRα) pathway, which synergistically enhanced the expression of the IL-4-induced M2 marker Arg1 and subsequent M2 polarization. In summary, this study revealed that leucine ameliorates CSS in LPS mice by promoting M2 polarization through the mTORC1/LXRα/Arg1 signaling pathway. Our findings indicate that a fundamental link between metabolism and immunity contributes to the resolution of inflammation and the repair of damaged tissues.


Subject(s)
Cytokine Release Syndrome , Interleukin-4 , Animals , Mice , Liver X Receptors , Leucine/pharmacology , Lipopolysaccharides , Cytokines , Signal Transduction , Macrophages , Mechanistic Target of Rapamycin Complex 1
11.
Animals (Basel) ; 14(3)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38338165

ABSTRACT

Post-weaning diarrhea significantly contributes to the high mortality in pig production, but the metabolic changes in weaned piglets with diarrhea remain unclear. This study aimed to identify the differential metabolites in the urine of diarrheal weaned piglets and those of healthy weaned piglets to reveal the metabolic changes associated with diarrhea in weaned piglets. Nine 25-day-old piglets with diarrhea scores above 16 and an average body weight of 5.41 ± 0.18 kg were selected for the diarrhea group. Corresponding to the body weight and sex of the diarrhea group, nine 25-month-old healthy piglets with similar sex and body weights of 5.49 ± 0.21 kg were selected as the control group. Results showed that the serum C-reactive protein and cortisol of piglets in the diarrhea group were higher than those in the control group (p < 0.05). The mRNA expression of TNF-α, IFN-γ in the jejunum and colon, and IL-1ß in the jejunum were increased in diarrhea piglets (p < 0.05), accompanied by a reduction in the mRNA expression of ZO-1, ZO-2, and CLDN1 in the jejunum and colon (p < 0.05); mRNA expression of OCLN in the colon also occurred (p < 0.05). Metabolomic analysis of urine revealed increased levels of inosine, hypoxanthine, guanosine, deoxyinosin, glucosamine, glucosamine-1-p, N-Acetylmannosamine, chitobiose, and uric acid, identified as differential metabolites in diarrhea piglets compared to the controls. In summary, elevated weaning stress and inflammatory disease were associated with the abnormalities of purine metabolism and the hexosamine biosynthetic pathway of weaned piglets. This study additionally indicated the presence of energy metabolism-related diseases in diarrheal weaned piglets.

12.
Anim Nutr ; 16: 409-421, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38371474

ABSTRACT

Rotaviruses (RV) are a major cause of severe gastroenteritis, particularly in neonatal piglets. Despite the availability of effective vaccines, the development of antiviral therapies for RV remains an ongoing challenge. Retinoic acid (RA), a metabolite of vitamin A, has been shown to have anti-oxidative and antiviral properties. However, the mechanism by which RA exerts its intestinal-protective and antiviral effects on RV infection is not fully understood. The study investigates the effects of RA supplementation in Duroc × Landrace × Yorkshire (DLY) piglets challenged with RV. Thirty-six DLY piglets were assigned into six treatments, including a control group, RA treatment group with two concentration gradients (5 and 15 mg/d), RV treatment group, and RV treatment group with the addition of different concentration gradients of RA (5 and 15 mg/d). Our study revealed that RV infection led to extensive intestinal architecture damage, which was mitigated by RA treatment at lower concentrations by increasing the villus height and villus height/crypt depth ratio (P < 0.05), enhancing intestinal stem cell signaling and promoting intestinal barrier functions. In addition, 15 mg/d RA supplementation significantly increased NRF2 and HO-1 protein expression (P < 0.05) and GSH content (P < 0.05), indicating that RA supplementation can enhance anti-oxidative signaling and redox homeostasis after RV challenge. Additionally, the research demonstrated that RA exerts a dual impact on the regulation of autophagy, both stimulating the initiation of autophagy and hindering the flow of autophagic flux. Through the modulation of autophagic flux, RA influence the progression of RV infection. These findings provide new insights into the regulation of redox hemostasis and autophagy by RA and its potential therapeutic application in RV infection.

13.
J Anim Sci Biotechnol ; 15(1): 22, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38331814

ABSTRACT

BACKGROUND: Transmissible gastroenteritis virus (TGEV) is one of the main pathogens causing severe diarrhea of piglets. The pathogenesis of TGEV is closely related to intestinal inflammation. All-trans retinoic acid (ATRA) is the main active metabolite of vitamin A, which has immunomodulatory and anti-inflammatory properties. However, it is unclear whether ATRA can alleviate TGEV-induced intestinal inflammation and barrier dysfunction in piglets. This study aimed to investigate the effects of ATRA on growth performance, diarrhea, intestinal inflammation and intestinal barrier integrity of TGEV-challenged piglets. METHODS: In a 19-d study, 32 weaned piglets were randomly divided into 4 treatments: Control group (basal diet), TGEV group (basal diet + TGEV challenge), TGEV + ATRA5 group (basal diet + 5 mg/d ATRA + TGEV challenge) and TGEV + ATRA15 group (basal diet + 15 mg/d ATRA + TGEV challenge). On d 14, piglets were orally administered TGEV or the sterile medium. RESULTS: Feeding piglets with 5 and 15 mg/d ATRA alleviated the growth inhibition and diarrhea induced by TGEV (P < 0.05). Feeding piglets with 5 and 15 mg/d ATRA also inhibited the increase of serum diamine oxidase (DAO) activity and the decrease of occludin and claudin-1 protein levels in jejunal mucosa induced by TGEV, and maintained intestinal barrier integrity (P < 0.05). Meanwhile, 5 mg/d ATRA feeding increased the sucrase activity and the expressions of nutrient transporter related genes (GLUT2 and SLC7A1) in jejunal mucosa of TGEV-challenged piglets (P < 0.05). Furthermore, 5 mg/d ATRA feeding attenuated TGEV-induced intestinal inflammatory response by inhibiting the release of interleukin (IL)-1ß, IL-8 and tumor necrosis factor-α (TNF-α), and promoting the secretion of IL-10 and secretory immunoglobulin A (sIgA) (P < 0.05). Feeding 5 mg/d ATRA also down-regulated the expressions of Toll-like receptors and RIG-I like receptors signaling pathway related genes (TLR3, TLR4, RIG-I, MyD88, TRIF and MAVS) and the phosphorylation level of nuclear factor-κB-p65 (NF-κB p65), and up-regulated the inhibitor kappa B alpha (IκBα) protein level in jejunal mucosa of TGEV-challenged piglets (P < 0.05). CONCLUSIONS: ATRA alleviated TGEV-induced intestinal barrier damage by inhibiting inflammatory response, thus improving the growth performance and inhibiting diarrhea of piglets. The mechanism was associated with the inhibition of NF-κB signaling pathway mediated by TLR3, TLR4 and RIG-I.

14.
Carbohydr Polym ; 326: 121613, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38142074

ABSTRACT

This study isolated and purified a novel homogeneous arabinogalactan polysaccharide from Yucca schidigera extract (YSE), unveiled its unique structure and explored its antioxidant function. Firstly, the antioxidant potential of YSE was demonstrated in piglet trials. A homogeneous polysaccharide with a molecular weight of 24.2 kDa, designated as Yucca schidigera polysaccharide B (YPB), was isolated and purified from YSE. The monosaccharide composition of YPB was Rha, Araf, Galp, and Glcp, whose molar percentages were 2.8 %, 11.6 %, 45.5 %, and 40.0 %, respectively. Methylation analysis combined with 1D and 2D nuclear magnetic resonance showed that YPB was a complex polysaccharide with a main glycosidic linkage pattern of →2)-α-ʟ-Rha-(1 â†’ 3)-ß-ᴅ-Galp-(1→3)-ß-ᴅ-Galp-(1 â†’ 3)-ß-ᴅ-Galp-(1 â†’ 3)-ß-ᴅ-Glcp-(1→, and branched Araf and Galp fragments were connected with the main chain through →3,6)-ß-ᴅ-Galp-(1→, →3,4)-ß-ᴅ-Glcp-(1→, and →2,4)-α-ʟ-Rha-(1→ linkages. Following the in vitro biochemical assays of bioactive components, YPB should be the contributor to the antioxidant activity in YSE. Based on the establishment of oxidative stress model, YPB exhibited strong antioxidant capacity and activated NRF2 pathway, and then provided protection against the damage induced oxidative stress in IPEC-J2 cells and rats. Further analysis with inhibitors found that this antioxidant effect was attributed to its interaction with epidermal growth factor receptor and mannose receptor, and stimulating PI3K/AKT pathway.


Subject(s)
Antioxidants , Yucca , Swine , Animals , Rats , Antioxidants/chemistry , Yucca/chemistry , Phosphatidylinositol 3-Kinases , Polysaccharides/chemistry
16.
Animals (Basel) ; 13(19)2023 Sep 24.
Article in English | MEDLINE | ID: mdl-37835612

ABSTRACT

To investigate the effects of lipid sources on growth performance and intestinal health, 72 weaned pigs were randomly allocated to three treatments. Pigs were fed with a corn-soybean meal diet containing 2% soybean oil (SO), or fish-palm-rice oil mixture (FPRO), or coconut-palm-rice oil mixture (CPRO). The trial lasted for 28 days; blood and intestinal tissue samples were collected. The results showed that the crude fat digestibility of the FPRO group was higher than that of the SO and CPRO groups (p < 0.05). The FPRO group also had higher digestibility of dry matter, ash, and gross energy than the SO group (p < 0.05); compared to the SO group, the serum interlukin-6 (IL-6) concentration was decreased. Interestingly, the FPRO and CPRO groups had higher villus height than the SO group in the jejunum and ileum, respectively (p < 0.05). Moreover, the FPRO group had higher Lactobacillus abundance than the SO group in the colon and cecum (p < 0.05). Importantly, the expression levels of tight junction protein ZO-1, Claudin-1, and Occludin in the duodenal and ileal mucosa were higher in the FPRO group than in the SO and CPRO groups (p < 0.05). The expression levels of nutrient transporters such as the CAT-1, PepT1, FATP1, and SGLT1 were higher in the FPRO group than in the SO group (p < 0.05). The improved digestibility and intestinal epithelium functions, as well as the reduced inflammatory cytokines, in the FPRO and CPRO group suggest that a mixed lipid source such as the FPRO deserves further attention.

17.
Microorganisms ; 11(10)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37894028

ABSTRACT

Comprehensive studies on the effects of genetics and fiber diets on antibiotic resistance genes (ARGs) remain scarce. In this study, we analyzed the profiles of ARGs in colonic contents and fecal samples of Taoyuan, Duroc, and Xiangcun pigs (n = 10) fed at different fiber levels. Through macrogenomic analysis, we identified a total of 850 unique types of ARGs and classified them into 111 drug resistance classes. The abundance of partially drug-resistant ARGs was higher in the colonic contents of local pig breeds under a large-scale farming model. ARGs were found to be widely distributed among a variety of bacteria, predominantly in the phyla Firmicutes, Proteobacteria, and Bacteroidetes. Fiber diets reduce the abundance of ARGs in colonic contents and feces, and mobile genetic elements (MGEs) and short-chain fatty acids (SCFAs) are important drivers in mediating the effect of fiber diets on the abundance of ARGs. In vitro fermentation experiments confirmed that butyric acid significantly reduced the abundance of ARGs. In summary, the results of this study enhanced our understanding of the distribution and composition of ARGs in the colon of different breeds of pigs and revealed that a fiber diet can reduce ARGs in feces through its Butyric acid, providing reference data for environmental safety.

18.
Front Microbiol ; 14: 1192288, 2023.
Article in English | MEDLINE | ID: mdl-37822749

ABSTRACT

As research on gut microbes progresses, it becomes increasingly clear that a small family of microbiota--fungi, plays a crucial role in animal health. However, little is known about the fungal composition in the pig intestine, especially after a dietary fiber diet and hybrid genetics, and the changes in host pathogenicity-associated genes they carry. The purpose of this study is to investigate the effects of diet and genetics on the diversity and structure of porcine intestinal fungi and to describe, for the first time, the host pathogenicity-related genes carried by porcine intestinal fungi. Samples of colonic contents were collected for metagenomic analysis using a 3 × 2 parsing design, where three pig breeds (Taoyuan, Duroc, and crossbred Xiangcun) were fed high or low fiber diets (n = 10). In all samples, we identified a total of 281 identifiable fungal genera, with Ascomycota and Microsporidia being the most abundant fungi. Compared to Duroc pigs, Taoyuan and Xiangcun pigs had higher fungal richness. Interestingly, the fiber diet significantly reduced the abundance of the pathogenic fungus Mucor and significantly increased the abundance of the fiber digestion-associated fungus Neocallimastix. Pathogenic fungi exert their pathogenicity through the genes they carry that are associated with host pathogenicity. Therefore, we obtained 839 pathogenicity genes carried by the spectrum of fungi in the pig intestine by comparing the PHI-base database. Our results showed that fungi in the colon of Taoyuan pigs carried the highest abundance of different classes of host pathogenicity-related genes, and the lowest in Duroc pigs. Specifically, Taoyuan pigs carried high abundance of animal pathogenicity-related genes (CaTUP1, CPAR2_106400, CaCDC35, Tfp1, CaMNT2), and CaTUP1 was the key gene for Candida pathogenicity. The intestinal fungal composition of crossbred Xiangcun pigs and the abundance of host pathogenicity-associated genes they carried exhibited a mixture of characteristics of Taoyuan and Duroc pigs. In conclusion, our results provide the first comprehensive report on the effects of dietary fiber and genetics on the composition of intestinal fungi and the host-associated pathogenicity genes they carry in pigs. These findings provide a reference for subsequent pig breeding and development of anti-pathogenic fungal drugs.

19.
Sci Total Environ ; 905: 167043, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37717771

ABSTRACT

BACKGROUND: Iron plays a pivotal role in various physiological processes, including intestinal inflammation, ferroptosis, and the modulation of the gut microbiome. However, the way these factors interact with each other is unclear. METHODS: Mice models were fed with low, normal and high iron diets to assess their impacts on colitis, ferroptosis and gut microbiota. Untargeted fecal metabolomics analysis, 16S rRNA sequencing, histopathology analysis, real-time quantitative PCR and western blot were performed to analyze the differences in the intestinal inflammatory response and understanding its regulatory mechanisms between low, normal and high iron groups. RESULTS: The iron overload changed the serum iron, colon iron and fecal iron. In addition, the iron overload induced the colitis, induced the ferroptosis and altered the microbiome composition in the fecal of mice. By using untargeted fecal metabolomics analysis to screen of metabolites in the fecal, we found that different metabolomics profiles in the fecal samples between iron deficiency, normal iron and iron overload groups. The correlation analysis showed that both of iron deficiency and overload were closely related to Dubosiella. The relationship between microbial communities (e.g., Akkermansia, Alistipes, and Dubosiella) and colitis-related parameters was highly significant. Additionally, Alistipes and Bacteroides microbial communities displayed a close association with ferroptosis-related parameters. Iron overload reduced the concentration of metabolites, which exert the anti-inflammatory effects (e.g., (+)-.alpha.-tocopherol) in mice. The nucleotide metabolism, enzyme metabolism and metabolic diseases were decreased and the lipid metabolism was increased in iron deficiency and iron overload groups compared with normal iron group. CONCLUSION: Iron overload exacerbated colitis in mice by modulating ferroptosis and perturbing the gut microbiota. Iron overload-induced ferroptosis was associated with NRF2/GPX-4 signaling pathway. Specific microbial taxa and their associated metabolites were closely intertwined with both colitis and ferroptosis markers.


Subject(s)
Colitis , Ferroptosis , Gastrointestinal Microbiome , Iron Deficiencies , Iron Overload , Animals , Mice , RNA, Ribosomal, 16S , Colitis/chemically induced , Iron , Bacteroidetes , Firmicutes , Mice, Inbred C57BL
20.
J Anim Sci Biotechnol ; 14(1): 105, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37553706

ABSTRACT

BACKGROUND: Starch is a major component of carbohydrates and a major energy source for monogastric animals. Starch is composed of amylose and amylopectin and has different physiological functions due to its different structure. It has been shown that the energy supply efficiency of amylose is lower than that of amylopectin. However, there are few studies on the effect of starch structure on the available energy of pigs. The purpose of this study was to measure the effect of different structures of starch in the diet on the net energy (NE) of pigs using a comparative slaughter method and to establish a prediction equation to estimate the NE of starch with different structures. Fifty-six barrows (initial BW 10.18 ± 0.11 kg) were used, and they were housed and fed individually. Pigs were divided into 7 treatments, with 8 replicates for each treatment and 1 pig for each replicate. One of the treatments was randomly selected as the initial slaughter group (ISG). Pigs in the remaining treatments were assigned to 6 diets, fed with basic diet and semi-pure diets with amylose/amylopectin ratio (AR) of 3.09, 1.47, 0.25, 0.15 and 0.12, respectively. The experiment lasted for 28 d. RESULTS: Results showed that compared with the high amylose (AM) groups (AR 3.09 and 1.47), the high amylopectin (AP) group (AR 0.15) significantly increased the final BW, average daily weight gain and average daily feed intake of pigs (P < 0.05), but the F:G of the AM group was lower (P < 0.01). In addition, AR 0.15 and 0.12 groups have higher (P < 0.01) nutrient digestibility of dry matter, crude protein, gross energy and crude ash. Meanwhile, compared with other groups, AR 0.15 group has a higher (P < 0.05) NE intake and energy retention (RE). The regressive equation for predicting with starch structures was established as RE = 1,235.243 - 48.298AM/AP (R2 = 0.657, P = 0.05). CONCLUSIONS: In conclusion, NE intake and RE of pigs augmented with the increase of dietary amylopectin content, indicating that diets high in amylopectin were more conducive to promoting the growth of pigs in the late conservation period.

SELECTION OF CITATIONS
SEARCH DETAIL