Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 338: 122724, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37832780

ABSTRACT

Decabromodiphenyl ethane (DBDPE) as the most widely used novel brominated flame retardants (NBFRs), has become a ubiquitous emerging pollutant in the environment. However, its toxic effects on vegetable growth during agricultural production have not been reported. In this study, we investigated the response mechanisms of hydroponic lettuce to DBDPE accumulation, antioxidant stress, cell structure damage, and metabolic pathways after exposure to DBDPE. The concentration of DBDPE in the root of lettuce was significantly higher than that in the aboveground part. DBDPE induced oxidative stress on lettuce, which stimulated the defense of the antioxidative system of lettuce cells, and the cell structure produced slight plasma-wall separation. In terms of metabolism, metabolic pathway disorders were caused, which are mainly manifested as inhibiting amino acid biosynthesis and metabolism-related pathways, interfering with the biosyntheses of amino acids, organic acids, fatty acids, carbohydrates, and other substances, and ultimately manifested as decreased total chlorophyll content and root activity. In turn, metabolic regulation alleviated antioxidant stress. The mechanisms of the antioxidative reaction of lettuce to DBDPE were elucidated by IBR, PLS-PM analysis, and molecular docking. Our results provide a theoretical basis and research necessity for the evaluation of emerging pollutants in agricultural production and the safety of vegetables.


Subject(s)
Environmental Pollutants , Flame Retardants , Antioxidants/pharmacology , Lactuca , Molecular Docking Simulation , Bromobenzenes/analysis , Oxidative Stress , Environmental Pollutants/analysis , Flame Retardants/toxicity , Flame Retardants/analysis , Halogenated Diphenyl Ethers/toxicity , Halogenated Diphenyl Ethers/analysis
2.
Environ Pollut ; 334: 122160, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37437756

ABSTRACT

Brominated flame retardants (BFRs) are widely used in various productions. As typical BFRs, polybrominated diphenyl ethers (PBDEs) are prohibited because of their toxicity and persistence. Some of the alternatives to PBDEs, new brominated flame retardants (NBFRs), have also been found in the environment and some have assigned hazardous properties and were categorized as persistent. In this study, a typical e-waste dismantling area was chosen as the study area, and the soil and rice samples were collected from the paddy fields around the circular economy park in Guiyu, China. The contaminations of PBDEs and NBFRs in soils and rice plants were detected, and the health risks associated with consumption and exposure to the environment were calculated as well. The concentrations of ∑PBDEs and ∑NBFRs in soil ranged from 283 to 928 µg/kg and 54.7-437 µg/kg, respectively. In rice plants, the majority of BFRs were concentrated in the following order: root > leaf > stem > grain. Additionally, only the PBT exhibited a stronger bioaccumulation ability in rice with the bioconcentration factors more than 1.00. The results of the health quotient calculation shown that BDE-47 might have an impact on people's health that only the HQ of BDE-47 in the soil was higher than 1.00, while there had no significant health risk in grain of BFRs. We believe that our work could assist researchers in investigating and revealing the human health effects of BFRs in soil and rice.


Subject(s)
Electronic Waste , Flame Retardants , Oryza , Humans , Soil , Halogenated Diphenyl Ethers/analysis , Flame Retardants/analysis , Environmental Monitoring/methods , China
3.
Environ Sci Pollut Res Int ; 30(37): 86821-86829, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37410322

ABSTRACT

The extensive applications of decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, have induced its accumulation in sediment, which may have a great negative impact on the ecological environment. In this work, the biochar/nano-zero-valent iron materials (BC/nZVI) were synthesized to remove DBDPE in the sediment. Batch experiments were carried out to investigate the influencing factors of the removal efficiency, and kinetic model simulation and thermodynamic parameter calculation were performed. The degradation products and mechanisms were probed. The results indicated that the addition of 0.10 g·g-1 BC/nZVI to the sediment with an initial concentration of 10 mg·kg-1 DBDPE could remove 43.73% of DBDPE during 24 h. The water content of the sediment was a critical factor in the removal of DBDPE, which was optimal at 1:2 of sediment to water. The removal efficiency and reaction rate were enhanced by increasing dosage, water content, and reaction temperature or decreasing initial concentration of DBDPE based on the fitting results of the quasi-first-order kinetic model. Additionally, the calculated thermodynamic parameters suggested that the removal process was a spontaneously and reversibly endothermic reaction. The degradation products were further determined by GC-MS, and the mechanisms were presumed that DBDPE was debrominated to produce octabromodiphenyl ethane (octa-BDPE). This study provides a potential remediation method for highly DBDPE-contaminated sediment by using BC/nZVI.


Subject(s)
Iron , Water Pollutants, Chemical , Kinetics , Charcoal , Water , Water Pollutants, Chemical/analysis
4.
Water Res ; 242: 120176, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37301001

ABSTRACT

The extensive utilization of both legacy and novel brominated flame retardants (BFRs) leads to high environmental concentrations, which would be bioaccumulated by organisms and further transferred through the food webs, causing potential risks to humans. In this study, five BFRs, that showed high detection frequencies and concentrations in sediments from an e-waste dismantling site in Southern China, namely 2,3,4,5,6-pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209), were selected as target pollutants in the lab-constructed aquatic food web as part of a micro-ecosystem, to investigate their distribution, bioaccumulation, and trophic transfer patterns. The significant correlations between different samples in the food web indicated that the dietary uptake appeared to influence the levels of BFRs in organisms. Significant negative correlations were observed between the trophic level of organisms and the lipid-normalized concentrations of BTBPE and DBDPE, indicating the occurrence of trophic dilution after 5-month exposure. However, the average values of bioaccumulation factors (BAFs) were from 2.49 to 5.17 L/kg, underscoring the importance of continued concern for environmental risks of BFRs. The organisms occupying higher trophic levels with greater bioaccumulation capacities may play a pivotal role in determining the trophic magnification potentials of BFRs. This research provides a helpful reference for studying the impacts of feeding habits on bioaccumulation and biomagnification, as well as for identifying the fate of BFRs in aquatic environment.


Subject(s)
Flame Retardants , Hydrocarbons, Brominated , Water Pollution, Chemical , Humans , Bioaccumulation , Ecosystem , Environmental Monitoring , Flame Retardants/analysis , Fresh Water , Halogenated Diphenyl Ethers , Water Pollution, Chemical/analysis
5.
Sci Total Environ ; 887: 164204, 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37196961

ABSTRACT

DBDPE and Cd are representative contaminants commonly found in electronic waste (e-waste), which tend to be gradually discharged and accumulated in the environment during e-waste dismantling, resulting in frequent outbreaks and detection of these pollutants. The toxicity of both chemicals to vegetables after combined exposure has not been determined. The accumulation and mechanisms of phytotoxicity of the two compounds, alone and in combination, were studied using lettuce. The results showed that the enrichment ability of Cd and DBDPE in root was significantly higher than that in aerial part. Exposure to 1 mg/L Cd + DBDPE reduced the toxicity of Cd to lettuce, while exposure to 5 mg/L Cd + DBDPE increased the toxicity of Cd to lettuce. The absorption of Cd in the underground part of lettuce of 5 mg/L Cd + DBDPE was significantly increased by 108.75 % compared to 5 mg/L Cd. The significant enhancement of antioxidant system activity in lettuce under 5 mg/L Cd + DBDPE exposure, and the root activity and total chlorophyll content were decreased by 19.62 % and 33.13 %, respectively, compared to the control. At the same time, the organelles and cell membranes of lettuce root and leaf were significantly damaged, which was significantly worse than that of single Cd and DBDPE treatment. Combined exposure significantly affected the pathways related to amino acid metabolism, carbon metabolism and ABC transport in lettuce. This study filled the safety gap of DBDPE and Cd combined exposure on vegetables and would provide a theoretical basis for the environmental behavior and toxicological study of DBDPE and Cd.


Subject(s)
Cadmium , Lactuca , Lactuca/metabolism , Cadmium/metabolism , Vegetables/metabolism , Antioxidants/metabolism , Metabolomics
6.
J Hazard Mater ; 443(Pt B): 130259, 2023 02 05.
Article in English | MEDLINE | ID: mdl-36335901

ABSTRACT

Sulfidation effectively improves the electron transfer efficiency of nanoscale zero-valent iron (nZVI), but decreases the specific surface area of nZVI. In this study, sulfidated nZVI (S-nZVI) coated with rhamnolipid (RL-S-nZVI) was synthesized and used to stabilize Pb, Cd, and As in combined polluted soil. The stabilization efficiency of 0.3% (wt) RL-S-nZVI to water soluble Pb, Cd, and As in soil reached 88.76%, 72%, and 63%, respectively. Rhamnolipid coating inhibited the reduction of specific surface area and successfully encapsulated nZVI, thus reducing the oxidation of Fe0. The types of iron oxides in RL-S-nZVI were reduced compared to S-nZVI, but the content and strength of Fe0 iron were obviously enhanced. Furthermore, rhamnolipid functional groups (-COOH and -COO-) were also involved in the stabilization process. In addition, the stabilization efficiency of RL-S-nZVI to the bioavailable Pb, Cd, and As in soil increased by 41%, 41%, and 50%, respectively, compared with nZVI. The presence of organic acids, especially citric acid, improved the stabilization efficiency of RL-S-nZVI to the three metals. The result of BCR sequential extraction indicated that RL-S-nZVI increased the residual state of Pb, Cd, and As and reduced the acid-soluble and reducible state after 28 days of soil incubation. XRD and XPS analyses showed that the stabilization mechanisms of RL-S-nZVI on heavy metals involved in ion exchange, surface complexation, adsorption, co-precipitation, chemisorption, and redox.


Subject(s)
Iron , Soil Pollutants , Iron/analysis , Soil , Cadmium/analysis , Lead/analysis , Soil Pollutants/analysis
7.
Environ Pollut ; 310: 119877, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35926732

ABSTRACT

Brominated flame retardants (BFRs) are widely used because of their excellent flame retardant performance and are frequently detected in the soil environment. Their adverse impacts on soil organisms cannot be ignored. The enrichment and removal dynamics of the five BFRs (pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE), and decabromodiphenyl ether (BDE209)) in earthworms and different tissues (epidermis, intestinal tract, and cast) in the presence of co-exposure were explored for the first time. The results showed that the enrichment of the five BFRs in earthworms increased with increasing exposure concentration and time. The distribution of these chemicals in different tissues of earthworms was different. The contents of HBB and PBT in the intestine and epidermis were the highest and were more than 60% during most of the time. Additionally, the contents of BTBPE, BDE209, and DBDPE were significantly increased while the contents of HBB and PBT were significantly decreased in the cast. The correlation analysis indicated that HBB and PBT had a significant relationship in all the tissues, but BDE209 and DBDPE only had a relationship in the cast, which might be attributed to the structure of the pollutants. Additionally, the experiments illustrated that earthworms had strong removal for HBB and PBT, but were weak for DBDPE and BDE209.


Subject(s)
Environmental Pollutants , Flame Retardants , Oligochaeta , Animals , Environmental Monitoring , Halogenated Diphenyl Ethers , Soil
8.
Sci Total Environ ; 840: 156634, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35710012

ABSTRACT

Due to the characteristics of persistent organic pollutants (POPs), some legacy brominated flame retardants (LBFRs) were prohibited from use, and then gradually replaced by novel brominated flame retardants (NBFRs). However, till now little research focused on the effects of NBFRs on the benthos. In the present study, 0.5, 5, and 50 mg/kg dw of pentabromotoluene (PBT), hexabromobenzene (HBB), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), decabromodiphenyl ethane (DBDPE) and decabromodiphenyl ether (BDE209) were added into sediments to test freshwater clams (Corbicula fluminea). In the 35-day exposure experiment, C. fluminea had different enrichment behaviors in three treatment groups. It was conjectured that in the lower dose group, the clams ingested contaminants and tended to be stable over time. While in higher dose groups, the clams were induced by the chemicals, leading to the changes in physiological activities so that the concentrations showed a downward trend first and then went up. The half-lives of contaminants in freshwater clams were between 0.911 and 11.6 days. DBDPE showed stronger bioaccumulation ability than BDE209 in this study. Parabolic relationships were observed between log BSAF and log Kow values in clam tissues. Debromination, hydroxylation, and methoxylated products were detected. Additionally, the gill samples of C. fluminea exposed to 50 mg/kg dw of single substance were observed by scanning electron microscope (SEM), indicating that the adhesions, tissue hyperplasia, and messy cilia occurred on the surface. Our research potentially contributes to further evaluations of the environmental risks posed in sediments contaminated by PBT, HBB, BTBPE, DBDPE, and BDE209, particularly the benthic organisms.


Subject(s)
Bivalvia , Flame Retardants , Animals , Bioaccumulation , Biotransformation , Environmental Monitoring , Flame Retardants/analysis , Halogenated Diphenyl Ethers/analysis , Water
9.
J Med Virol ; 92(12): 3617-3627, 2020 Dec.
Article in English | MEDLINE | ID: mdl-31994741

ABSTRACT

The treatment of tumors with oncolytic viruses is an important cancer immunotherapy strategy. Interleukin-15 (IL-15) can enhance the antitumor effect of natural killer cells and T cells. An oncolytic herpes simplex type II virus (oHSV2-mIL-15CherryFP) expressing mouse IL-15 was constructed using the CRISPR/Cas9 system, and its antitumor activity in vitro and in vivo was evaluated. In vitro, the mouse interleukin-15 (mIL-15) present in the culture supernatant expressed by oHSV2-mIL-15CherryFP was able to enhance the killing of CT26-GFP tumor cells by T cells. In addition, the intratumoral injection of oHSV2-mIL-15CherryFP inhibited tumor growth in the CT26-iRFP and BGC823-iRFP model. These results indicate that the use of oncolytic herpes simplex virus expressing IL-15 may be a potential therapeutic strategy in tumor immunotherapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...