Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 107(13): 4233-4244, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37231158

ABSTRACT

Surfactin is a lipopeptide which has attracted massive attention due to its versatile bioactive properties, although it has less commercial application due to its low yield in wild strains. The B. velezensis Bs916 has enable commercial production of surfactin due to its outstanding capacity to synthesize lipopeptides and amenable to genetically engineering. In this study, 20 derivatives with high surfactin production were obtained firstly by transposon mutagenesis and knockout techniques, and the surfactin yield of the derivative H5 (△GltB) was increased approximately 7-folds, reaching to 1.48 g/L. The molecular mechanism of high yielding surfactin in △GltB was investigated by the transcriptomic and KEGG pathway analysis. The results indicated that △GltB enhanced its ability to synthesize surfactin mainly by promoting transcription of the srfA gene cluster and inhibiting degradation of some key precursors such as fatty acid. Secondly, we obtained a triple mutant derivative BsC3 by cumulative mutagenesis of the negative genes GltB, RapF, and SerA, and it could increase the surfactin titer by twofold, reaching to 2.98 g/L. Thirdly, we achieved overexpression of two key rate-limiting enzyme genes, YbdT, and srfAD, and the derivative BsC5 which further increased the surfactin titer by 1.3-fold, reaching to 3.79 g/L. Finally, the yield of surfactin by derivatives was significantly increased under the optimal medium, particularly the BsC5 increased the surfactin titer to 8.37 g/L. To the best of our knowledge, this is one of the highest yields that have been reported. Our work may pave way for large scale production of surfactin by B. velezensis Bs916. KEY POINTS: • Elucidation of the molecular mechanism of surfactin high-yielding transposon mutant. • Genetically engineering of B. velezensis Bs916 surfactin titer to 8.37 g/L for large scale preparation.


Subject(s)
Gene Expression Profiling , Peptides, Cyclic , Transcriptome , Fatty Acids/metabolism , Lipopeptides/metabolism , Mutagenesis , Bacillus subtilis/genetics
2.
Curr Microbiol ; 80(5): 135, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36913050

ABSTRACT

Staphylococcus aureus is one of the important pathogens causing human diseases, especially its treatment has great challenges due to its resistance to methicillin and vancomycin. The Bacillus strains are known to be major sources of second metabolites that can function as drugs. Therefore, it is of great value to excavate metabolites with good inhibitory activity against S. aureus from Bacillus strains. In this study, a strain Bacillus paralicheniformis CPL618 with good antagonistic activity against S. aureus was isolated and genome analysis showed that the size was 4,447,938 bp and contained four gene clusters fen, bac, dhb, and lch which are potentially responsible for four cyclic peptides fengycin, bacitracin, bacillibactin, and lichenysin biosynthesis, respectively. These gene clusters were knockout by homologous recombination. The bacteriostatic experiment results showed that the antibacterial activity of ∆bac decreased 72.3% while Δfen, Δdhb, and ΔlchA did not significantly changed as that of wild type. Interestingly, the maximum bacitracin yield was up to 92 U/mL in the LB medium, which was extremely unusual in wild type strains. To further improve the production of bacitracin, transcription regulators abrB and lrp were knocked out, the bacitracin produced by ΔabrB, Δlrp, and ΔabrB + lrp was 124 U/mL, 112 U/mL, and 160 U/ml, respectively. Although no new anti-S. aureus compounds was found by using genome mining in this study, the molecular mechanisms of high yield of bacitracin and anti-S. aureus in B. paralicheniformis CPL618 were clarified. Moreover, B. paralicheniformis CPL618 was further genetically engineered for industrial production of bacitracin.


Subject(s)
Bacillus , Bacitracin , Humans , Bacitracin/pharmacology , Bacitracin/metabolism , Bacillus/genetics , Bacillus/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Genetic Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...