Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; 356(12): e2300403, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37840368

ABSTRACT

The PI3K/AKT/mTOR pathway is one of the most common dysregulated signaling cascade responses in human cancers, playing a crucial role in cell proliferation and angiogenesis. Therefore, the development of anticancer drugs targeting the PI3K and mTOR pathways has become a research hotspot in cancer treatment. In this study, the PI3K selective inhibitor GDC-0941 was selected as a lead compound, and 28 thiophenyl-triazine derivatives with aromatic urea structures were synthesized based on scaffold hopping, serving as a novel class of PI3K/mTOR dual inhibitors. The most promising compound Y-2 was obtained through antiproliferative activity evaluation, kinase inhibition, and toxicity assays. The results showed that Y-2 demonstrated potential inhibitory effects on both PI3K kinase and mTOR kinase, with IC50 values of 171.4 and 10.2 nM, respectively. The inhibitory effect of Y-2 on mTOR kinase was 52 times greater than that of the positive drug GDC-0941. Subsequently, the antitumor activity of Y-2 was verified through pharmacological experiments such as AO staining, cell apoptosis, scratch assays, and cell colony formation. The antitumor mechanism of Y-2 was further investigated through JC-1 experiments, real-time quantitative PCR, and Western blot analysis. Based on the above experiments, Y-2 can be identified as a potent PI3K/mTOR dual inhibitor for cancer treatment.


Subject(s)
Antineoplastic Agents , Phosphatidylinositol 3-Kinases , Humans , Phosphatidylinositol 3-Kinases/metabolism , MTOR Inhibitors , Structure-Activity Relationship , TOR Serine-Threonine Kinases , Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Cell Proliferation , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Apoptosis
2.
Int J Mol Sci ; 24(19)2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37834269

ABSTRACT

An imbalance in PI3K/AKT/mTOR pathway signaling in humans often leads to cancer. Therefore, the investigation of anti-cancer medications that inhibit PI3K and mTOR has emerged as a significant area of research. The aim of this study was to explore the effect of XIN-10, a dual PI3K/mTOR inhibitor, on the growth as well as antiproliferation of tumor cells and to investigate the anti-tumor mechanism of XIN-10 by further exploration. We screened three cell lines for more in-depth exploration by MTT experiments. From the AO staining, cell cycle and apoptosis, we found that XIN-10 had a more obvious inhibitory effect on the MCF-7 breast cancer cell line and used this as a selection for more in-depth experiments. A series of in vitro and in vivo experiments showed that XIN-10 has superior antiproliferative activity compared with the positive drug GDC-0941. Meanwhile, through the results of protein blotting and PCR experiments, we concluded that XIN-10 can block the activation of the downstream pathway of mTOR by inhibiting the phosphorylation of AKT(S473) as well as having significant inhibitory effects on the gene exons of PI3K and mTOR. These results indicate that XIN-10 is a highly potent inhibitor with low toxicity and has a strong potential to be developed as a novel PI3Kα/mTOR dual inhibitor candidate for the treatment of positive breast cancer.


Subject(s)
Breast Neoplasms , MTOR Inhibitors , Phosphatidylinositol 3-Kinases , Phosphoinositide-3 Kinase Inhibitors , Female , Humans , Apoptosis , Breast Neoplasms/drug therapy , Cell Line, Tumor , Cell Proliferation , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Bioorg Med Chem ; 78: 117133, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36599263

ABSTRACT

In this article, we designed and synthesized a series of novel thiophene-triazine derivatives bearing arylurea unit as potent dual PI3K/mTOR inhibitors. The cytotoxicity of all the target compounds were evaluated against nine cancer cell lines (breast cancer cell line MCF-7, lung cancer cell lines A549, NCI-H460, H2228 and H1975, cervical cancer cell lines Hela and Hela-MDR, ovarian cancer cell lines Ovcar-2 and glioma U87MG) and the kinase inhibitory activity against PI3K/mTOR kinases was also tested. The results demonstrated that most of the target compounds exhibited moderate to excellent activity and high selectivity against one or more cancer cell lines. Among them, seven compounds displayed better activity than lead compound GDC-0941. The inhibitory activity of the most promising compound on nine cancer cell lines was 302.5 times better than that of GDC-0941 with the IC50 values as low as 0.008 ± 0.002 µM, and the inhibitory activity against PI3Kα and mTOR kinase was excellent, with the IC50 values of 177.41 and 12.24 nM, respectively, indicating that it was a potential dual PI3Kα/mTOR inhibitor. The Structure-Activity Relationships (SARs) indicated that the introduction of the arylurea group significantly improved the cellular and kinase activities of the target compounds. Moreover, the results of toxicity and hemolysis experiments demonstrated that the most promising compound had low toxicity and good safety. The results of PCR assay and molecular docking modes showed that it was a potential PI3K/mTOR inhibitor, which was worthy of further study.


Subject(s)
Antineoplastic Agents , Phosphatidylinositol 3-Kinases , Humans , Cell Line, Tumor , Phosphatidylinositol 3-Kinases/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Phosphoinositide-3 Kinase Inhibitors/pharmacology , TOR Serine-Threonine Kinases , Triazines/pharmacology , Antineoplastic Agents/pharmacology , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor
5.
Chem Biol Drug Des ; 101(1): 195-217, 2023 01.
Article in English | MEDLINE | ID: mdl-36394145

ABSTRACT

The treatment of advanced non-small cell lung cancer (NSCLC) has made substantial progress due to the rapid development of small molecule targeted therapy, with dramatically prolonged survival. As an effective drug for the treatment of NSCLC, epidermal growth factor receptor (EGFR) inhibitors are currently experiencing issues like severe adverse events and drug resistance. It is urgent to develop novel types of EGFR inhibitors to overcome the abovementioned limitations. Pyrrole always works well as a probe for the creation of novel medication candidates for hard-to-treat conditions like lung cancer. Although the design, synthesis, and biological assays of pyrrole derivatives have been reported, their inhibitory actions against the receptor tyrosine kinase (RTK) EGFR have not been in-depthly studied. This review highlights the small molecule EGFR inhibitors containing pyrrole heterocyclic pharmacophores in recent years, and the research on their mechanism, biological activity, and structure-activity relationship (SAR).


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Mutation , Drug Resistance, Neoplasm , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use
6.
Bioorg Chem ; 129: 106157, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36209563

ABSTRACT

Blocking the PI3K/AKT/mTOR pathway has been widely recognized as an attractive cancer therapeutic strategy because of its crucial role in cell growth and survival. In this study, a novel series of 2-arylurea-1,3,5-triazine derivatives had been synthesized and evaluated as highly potent PI3K and mTOR inhibitors. The new compounds exhibited cytotoxic activities against MCF-7, Hela and A549 cancer cell lines (IC50 = 0.03-36.54 µM). The most promising compound XIN-9 exhibited potent inhibition against PI3K and mTOR kinase (IC50 = 23.8 and 10.9 nM). Mechanistic study using real-time PCR revealed the ability of XIN-9 to inhibit PI3K and mTOR. In addition, compound XIN-9 arrested the cell cycle of MCF-7 cells at the G0/G1 phase. XIN-9 also caused a significant dose-dependent increase of early and late apoptotic events. Molecular docking analysis revealed a high binding affinity for XIN-9 toward PI3K and mTOR. Following in vitro studies, XIN-9 was further evaluated in MCF-7 xenograft models to show significant in vivo anticancer efficacies with tumor growth inhibitions of 41.67% (po, 75 mg/kg). Overall, this work indicated that compound XIN-9 represents a potential anticancer targeting PI3K/AKT/mTOR pathway.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Phosphatidylinositol 3-Kinases/metabolism , MTOR Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Molecular Docking Simulation , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors/pharmacology , Cell Proliferation , Antineoplastic Agents/chemistry , Triazines/pharmacology , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Neoplasms/drug therapy
7.
Biomed Pharmacother ; 155: 113537, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36113258

ABSTRACT

Breast cancer has become the most commonly diagnosed cancer, surpassing lung cancer, with 2.26 million new breast cancers worldwide in 2020. Hence, there is an urgent need to develop effective molecularly targeted therapeutic drugs to treat breast cancer. In this paper, we designed, synthesized and screened a novel thiophene-triazine derivative, XS-2, as a potent dual PI3K/mTOR inhibitor for the treatment of breast cancer. Also, XS-2 was found to be potentially effective against triple-negative breast cancer (TNBC) in vitro during the investigation. We evaluated the in vitro inhibitory effect of XS-2 on 10 cancer cell lines by MTT and 6 kinases to investigated its in vivo antitumor activity in MCF-7 xenograft tumor-bearing BALB/c nude mice. In addition, the in vitro/in vivo toxicity to mice was also assessed by hemolytic toxicity, H&E staining and blood biochemical analysis. In order to investigate the antitumor mechanism of XS-2, a series of experiments were carried out in vitro/in vivo animal model and molecular biological levels such as the cell cycle and the apoptosis assay, real-time PCR, western blot, docking and molecular simulations analysis, etc. What's more, wound healing assay, Transwell and Western Blot were applied to explore the ability of XS-2 to inhibit the cell invasion and migration. The results showed that XS-2 exhibited strong antitumor activity both in vitro and in vivo. The inhibitory activities of XS-2 on ten cancer cell lines were ranging from 1.07 ± 0.11 to 0.002 ± 0.001 µM, which were 1565 times better than that of the lead compound GDC-0941, inhibitory activities against PI3Kα and mTOR kinases were 291.0 and 60.8 nM, respectively. Notably, XS-2 not only showed significant in vivo antitumor activity and low toxicity, with the tumor inhibition rate of 57.0 %, but also exhibited strong inhibitory in the expression of related proteins of PI3K pathway in tumor tissues. In addition, XS-2 significantly inhibited breast cancer MCF-7 and MDA-MB-231 cells in a concentration- and time-dependent manner, and inhibited the migration and invasion ability of MDA-MB-231 and MCF-7 cells. More than that, XS-2 could inhibit the increase of the expression levels of N-cadherin and vimentin upregulated by EGF and reversed the E-cadherin expression down regulated by EGF, resulting in inhibiting EMT in MCF-7 and MDA-MB-231 cells. The results showed that XS-2 was expected to be successfully developed as a high-efficiency and low-toxicity breast cancer therapeutic drug with the potential to inhibit the invasion and migration of TNBC. This provides a new research idea for the treatment of TNBC, which is of great significance.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Mice , Animals , Triple Negative Breast Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Vimentin , Mice, Nude , Epidermal Growth Factor/pharmacology , Cell Proliferation , TOR Serine-Threonine Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cadherins , Thiophenes/pharmacology , Triazines/pharmacology , Triazines/therapeutic use , Cell Line, Tumor , Cell Movement , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...