Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37446512

ABSTRACT

A high-efficiency photodetector consisting of colloidal PbS quantum dots (QDs) and single-layer graphene was prepared in this research. In the early stage, PbS QDs were synthesized and characterized, and the results showed that the product conformed with the characteristics of high-quality PbS QDs. Afterwards, the photodetector was derived through steps, including the photolithography and etching of indium tin oxide (ITO) electrodes and the graphene active region, as well as the spin coating and ligand substitution of the PbS QDs. After application testing, the photodetector, which was prepared in this research, exhibited outstanding properties. Under visible and near-infrared light, the highest responsivities were up to 202 A/W and 183 mA/W, respectively, and the highest detectivities were up to 2.24 × 1011 Jones and 2.47 × 108 Jones, respectively, with light densities of 0.56 mW/cm2 and 1.22 W/cm2, respectively. In addition to these results, the response of the device and the rise and fall times for the on/off illumination cycles showed its superior performance, and the fastest response times were approximately 0.03 s and 1.0 s for the rise and fall times, respectively. All the results illustrated that the photodetector based on PbS and graphene, which was prepared in this research, possesses the potential to be applied in reality.

2.
Prep Biochem Biotechnol ; 49(6): 597-605, 2019.
Article in English | MEDLINE | ID: mdl-30929602

ABSTRACT

A simple and accurate Nile Red fluorescent method was built to evaluate the lipid content of three different oleaginous yeasts by one standard curve. The staining of cells can be observed clearly by laser scanning confocal microscope, showing that Nile Red can enter into the cells of oleaginous yeasts easily. A series of conditions such as pretreating temperature, cell suspension concentration (OD600), staining time, Nile Red concentration and the type of suspension solvent were learnt systematically to obtain the optimal process parameters for Nile Red staining. After optimization, the fitting curve of Nile Red fluorescent method was established under suitable conditions (pretreating temperature: 50 °C, OD600: 1.0; staining time: 5 mins; Nile Red concentration: 1.0 µg/mL; suspension solvent: PBS) and it had a suitable correlation coefficient (R2 = 0.95) for lipid content measurement of different oleaginous yeasts. By this study, the possibility of lipid content determination of different oleaginous yeasts by one fitting curve can be proven and this will improve the efficiency of researches related to microbial lipid production.


Subject(s)
Fluorescent Dyes/chemistry , Lipids/analysis , Microscopy, Confocal/methods , Oxazines/chemistry , Yeasts/chemistry , Cryptococcus/chemistry , Lipomyces/chemistry , Staining and Labeling/methods , Temperature , Trichosporon/chemistry
3.
Bioresour Technol ; 275: 345-351, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30597396

ABSTRACT

High chemical input is required for enzymatic production of xylo-oligosaccharides (XOS) using xylan extracted from lignocellulosic biomass. In this study, enzymatic hydrolysis of alkaline oxidation (AO) treated sugarcane bagasse (SCB) directly for the production of XOS was conducted. The effect of AO pretreatment on the chemical compositions and hydrolytic properties of SCB was investigated. The AO pretreatment conditions with low chemical input for the production of XOS were optimized by orthogonal design. Stepwise enzymatic hydrolysis of AO pretreated SCB with xylanase and cellulase produced XOS (1.78 g/L), meanwhile, the cellulose conversion increased from 84.97% to 91.51% compared with directly enzymatic hydrolysis using cellulase. HPLC-UV and MALDI-TOF-MS analysis indicated that the obtained XOS products were mainly composed of xylobiose and xylose with a small amount of arabinose/4-O-methylglucuronic acid substituted xylotriose and xylotetraose. The proposed strategy for the co-production of functional XOS and fermentable sugars from SCB showed potential of industrial application.


Subject(s)
Cellulose/metabolism , Oligosaccharides/biosynthesis , Saccharum/metabolism , Sugars/metabolism , Alkalies , Biomass , Fermentation , Hydrolysis , Oxidation-Reduction
4.
Carbohydr Polym ; 208: 421-430, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30658820

ABSTRACT

Superabsorbent was synthesized from bacterial cellulose (BC) generated by in situ fermentation on bentonite inorganic gel (BIG). For BIG preparation, the effect of sodium agent's type and content, temperature and time of sodium-modification, and gelling agent's type and content on the viscosity of BIG were learned to optimize the synthesis process. For polymerization, the effect of different factors including ratio of monomer to substrate (modified BC from in situ fermentation), content of initiator and crosslinker, monomer neutralization degree, reaction temperature and time on the performance of composite (superabsorbent) synthesized were analyzed. Under optimal condition, the composite showed good water absorption, salts absorption, and water retention capacity. The original bentonite, sodium-based bentonite, BIG and composite structure was characterized by X-ray fluorescence (XRF), nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM) and thermogravimetric analysis (TGA), and the characterization partly explained the performance of water absorption and thermal stability of the composite. Overall, this study provides one method for superabsorbent synthesis from low-cost and natural resources.


Subject(s)
Bacteria/classification , Cellulose/metabolism , Clay/chemistry , Bentonite/chemistry , Cellulose/chemistry , Fermentation , Water/chemistry
5.
Polymers (Basel) ; 10(7)2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30960627

ABSTRACT

Cellulose-based superabsorbent was synthesized by bacterial cellulose (BC) grafting acrylic acid (AA) in the presence of N,N'-methylenebisacrylamide (NMBA) as a crosslinker and ammonium persulfate (APS) as an initiator. The influence of different factors on composite synthesis, including the weight ratio of the monomer to BC, initiator content, crosslinker content, AA neutralization degree, reaction temperature, and reaction time on the water absorbency of the composite, were systematically learned. Under the optimized conditions, the maximum water absorbency of the composite was 322 ± 23 g/g distilled water. However, the water absorbency was much less for the different salt solutions and the absorption capacity of the composite decreased as the concentration of the salt solutions increased. The pH value had a significant influence on water absorption performance, and with the increase of temperature, the water retention rate of the composite decreased. Additionally, the structure of this composite was characterized with nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). The results of NMR and FT-IR provided evidence that the composite was synthesized by BC and AA, and the microstructure showed that it had good performance for water absorption. In addition, the composite possessed suitable thermal stability, and that it could be used in a few high-temperature environments. Overall, this composite is promising for application in water absorption.

6.
RSC Adv ; 8(54): 30725-30731, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-35548762

ABSTRACT

Sugarcane bagasse (SCB) substrates with different chemical compositions were prepared by different pretreatments including dilute acid (DA), acidic sodium chlorite (ASC), alkali solution (AS), and alkali hydrogen peroxide (AHP). The compositions and chemical structures of pretreated SCB were characterized by HPLC, FTIR, XRD, and SEM. The addition of xylanase can significantly boost cellulase to hydrolyze cellulose and xylan especially for AS and AHP treated substrates. The obvious linear relationships between lignin removal and substrate digestibility were observed. ASC treated substrates obtained the highest digestibility (98.87%) of cellulose due to sufficiently removing lignin from SCB, whereas AHP treated substrates achieved the highest digestibility (84.61%) of xylan by cleaving the acetyl group on xylan and extending delignification. It was found that the synergistic effects between cellulase and xylanase were substrate and time specific. The better degree of synergy for the sugar production was in the initial hydrolysis stage but decreased in the later hydrolysis stage.

7.
J Agric Food Chem ; 65(51): 11237-11242, 2017 Dec 27.
Article in English | MEDLINE | ID: mdl-29200277

ABSTRACT

In this study, a fast startup of semi-pilot-scale anaerobic digestion of food waste acid hydrolysate for biogas production was carried out for the first time. During the period of fast startup, more than 85% of chemical oxygen demand (COD) can be degraded, and even more than 90% of COD can be degraded during the later stage of anaerobic digestion. During this anaerobic digestion process, the biogas yield, the methane yield, and the CH4 content in biogas were 0.542 ± 0.056 m3/kgCOD consumption, 0.442 ± 0.053 m3/kgCOD consumption, and 81.52 ± 3.05%, respectively, and these values were high and stable. Besides, the fermentation pH was very stable, in which no acidification was observed during the anaerobic digestion process (outlet pH was 7.26 ± 0.05 for the whole anaerobic digestion). Overall, the startup of this anaerobic digestion can be completed in a short period (the system can be stable 2 days after the substrate was pumped into the bioreactor), and anaerobic digestion of food waste acid hydrolysate is feasible and attractive for industrial treatment of food waste and biogas production.


Subject(s)
Biofuels/analysis , Methane/analysis , Waste Products/analysis , Anaerobiosis , Bioreactors , Pilot Projects , Sewage/chemistry
8.
Indian J Microbiol ; 57(4): 393-399, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29151639

ABSTRACT

Durian is one important tropical fruit with high nutritional value, but its shell is usually useless and considered as waste. To explore the efficient and high-value utilization of this agricultural and food waste, in this study, durian shell was simply hydrolyzed by dilute sulfuric acid, and the durian shell hydrolysate after detoxification was used for bacterial cellulose (BC) production by Gluconacetobacter xylinus for the first time. BC was synthesized in static culture for 10 days and the highest BC yield (2.67 g/L) was obtained at the 8th day. The typical carbon sources in the substrate including glucose, xylose, formic acid, acetic acid, etc. can be utilized by G. xylinus. The highest chemical oxygen demand (COD) removal (16.40%) was obtained at the 8th day. The highest BC yield on COD consumption and the highest BC yield on sugar consumption were 93.51% and 22.98% (w/w), respectively, suggesting this is one efficient bioconversion for BC production. Durian shell hydrolysate showed small influence on the BC structure by comparison with the structure of BC generated in traditional Hestrin-Schramm medium detected by FE-SEM, FTIR, and XRD. Overall, this technology can both solve the issue of waste durian shell and produce valuable bio-polymer (BC).

9.
Carbohydr Polym ; 175: 199-206, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28917857

ABSTRACT

Understanding the interaction mechanisms between xylan and xylan-degrading enzymes is beneficial to the efficient hydrolysis of xylan. Xylan from sugarcane bagasse (SB) was extracted and characterized. The effects of heat treatment and removal of side chains of SB xylan on the hydrolytic efficiency and synergistic action of endo-ß-1,4-xylanases (HoXyn11A and AnXyn10C), ß-xylosidases (AnXln3D), and α-l-arabinofuranosidases (AnAxh62A) were investigated. Results indicated that heat treatment of xylan can improve the hydrolytic efficiency of xylan-degrading enzymes, and it is essential for the efficient hydrolysis of xylan by HoXyn11A. The removal of arabinofuranosyl side chains of xylan by AnAxh62A before enzymatic hydrolysis reduced the hydrolytic efficiency of HoXyn11A and AnXyn10C on xylan. AnXyn10C was more efficient than HoXyn11A in hydrolysis of xylan, whereas HoXyn11A showed better synergistic action than AnXyn10C with AnAxh62A and AnXln3D in the hydrolysis of xylan. This study provides new insights on the enzymatic hydrolysis of SB into monosaccharides and xylo-oligosaccharides.


Subject(s)
Cellulose/chemistry , Endo-1,4-beta Xylanases/metabolism , Saccharum/chemistry , Xylans/metabolism , Hydrolysis
10.
Prep Biochem Biotechnol ; 47(10): 1025-1031, 2017 Nov 26.
Article in English | MEDLINE | ID: mdl-28857665

ABSTRACT

Biomass acid hydrolysate of oleaginous yeast Trichosporon cutaneum after microbial oil extraction was applied as substrate for bacterial cellulose (BC) production by Komagataeibacter xylinus (also named as Gluconacetobacter xylinus previously) for the first time. BC was synthesized in static culture for 10 days, and the maximum BC yield (2.9 g/L) was got at the 4th day of fermentation. Most carbon sources in the substrate (glucose, mannose, formic acid, acetic acid) can be utilized by K. xylinus. The highest chemical oxygen demand (COD) removal (40.7 ± 3.0%) was obtained at the 6th day of fermentation, and then the COD increased possibly due to the degradation of BC. The highest BC yield on COD consumption was 38.7 ± 4.0% (w/w), suggesting that this is one efficient bioconversion for BC production. The BC structure was affected little by the substrate by comparison with that generated in classical HS medium using field-emission scanning electron microscope (FE-SEM), Fourier transform infrared, and X-ray diffraction. Overall, this technology can both solve the issue of waste oleaginous yeast biomass and produce valuable biopolymer (BC).


Subject(s)
Biomass , Cellulose/metabolism , Gluconacetobacter xylinus/metabolism , Industrial Microbiology/methods , Oils/isolation & purification , Trichosporon/metabolism , Acids/metabolism , Biological Oxygen Demand Analysis , Fermentation , Hydrolysis , Oils/metabolism , Solid Waste/analysis , Trichosporon/chemistry
11.
Biotechnol Biofuels ; 10: 147, 2017.
Article in English | MEDLINE | ID: mdl-28616071

ABSTRACT

BACKGROUND: Microbial oil is one important bio-product for its important function in energy, chemical, and food industry. Finding suitable substrates is one key issue for its industrial application. Both hydrophilic and hydrophobic substrates can be utilized by oleaginous microorganisms with two different bio-pathways ("de novo" lipid fermentation and "ex novo" lipid fermentation). To date, most of the research on lipid fermentation has focused mainly on only one fermentation pathway and little work was carried out on both "de novo" and "ex novo" lipid fermentation simultaneously; thus, the advantages of both lipid fermentation cannot be fulfilled comprehensively. RESULTS: In this study, corncob acid hydrolysate with soybean oil was used as a mix-medium for combined "de novo" and "ex novo" lipid fermentation by oleaginous yeast Trichosporon dermatis. Both hydrophilic and hydrophobic substrates (sugars and soybean oil) in the medium can be utilized simultaneously and efficiently by T. dermatis. Different fermentation modes were compared and the batch mode was the most suitable for the combined fermentation. The influence of soybean oil concentration, inoculum size, and initial pH on the lipid fermentation was evaluated and 20 g/L soybean oil, 5% inoculum size, and initial pH 6.0 were suitable for this bioprocess. By this technology, the lipid composition of extracellular hydrophobic substrate (soybean oil) can be modified. Although adding emulsifier showed little beneficial effect on lipid production, it can modify the intracellular lipid composition of T. dermatis. CONCLUSIONS: The present study proves the potential and possibility of combined "de novo" and "ex novo" lipid fermentation. This technology can use hydrophilic and hydrophobic sustainable bio-resources to generate lipid feedstock for the production of biodiesel or other lipid-based chemical compounds and to treat some special wastes such as oil-containing wastewater.

12.
Bioresour Technol ; 232: 398-407, 2017 May.
Article in English | MEDLINE | ID: mdl-28258805

ABSTRACT

Recently, technology of using oleaginous microorganisms for biological treatment of wastewaters has become one hot topic in biochemical and environmental engineering for its advantages such as easy for operation in basic bioreactor, having potential to produce valuable bio-products, efficient wastewaters treatment in short period, etc. To promote its industrialization, this article provides some comprehensive analysis of this technology such as its advances, issues, and outlook especially from industrial viewpoint. In detail, the types of wastewaters can be treated and the kinds of oleaginous microorganisms used for biological treatment are introduced, the potential of industrial application and issues (relatively low COD removal, low lipid yield, cost of operation, and lack of scale up application) of this technology are presented, and some critical outlook mainly on co-culture method, combination with other treatments, process controlling and adjusting are discussed systematically. By this article, some important information to develop this technology can be obtained.


Subject(s)
Industry , Oils/metabolism , Wastewater/microbiology , Water Purification/methods , Biodegradation, Environmental , Biotechnology , Water Purification/economics
13.
Bioresour Technol ; 228: 257-263, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28081523

ABSTRACT

This study aims to propose a biorefinery pretreatment technology for the bioconversion of sugarcane bagasse (SB) into biofuels and N-fertilizers. Performance of diluted acid (DA), aqueous ammonia (AA), oxidate ammonolysis (OA) and the combined DA with AA or OA were compared in SB pretreatment by enzymatic hydrolysis, structural characterization and acetone-butanol-ethanol (ABE) fermentation. Results indicated that DA-OA pretreatment improves the digestibility of SB by sufficiently hydrolyzing hemicellulose into fermentable monosaccharides and oxidating lignin into soluble N-fertilizer with high nitrogen content (11.25%) and low C/N ratio (3.39). The enzymatic hydrolysates from DA-OA pretreated SB mainly composed of glucose was more suitable for the production of ABE solvents than the enzymatic hydrolysates from OA pretreated SB containing high ratio of xylose. The fermentation of enzymatic hydrolysates from DA-OA pretreated SB produced 12.12g/L ABE in 120h. These results suggested that SB could be utilized efficient, economic, and environmental by DA-OA pretreatment.


Subject(s)
Acetone/metabolism , Ammonia/pharmacology , Butanols/metabolism , Cellulase/metabolism , Cellulose/metabolism , Ethanol/metabolism , Fermentation/drug effects , Saccharum/metabolism , Sulfuric Acids/pharmacology , Biofuels , Bioreactors , Hydrolysis , Oxidation-Reduction , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...