Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3792, 2023 06 26.
Article in English | MEDLINE | ID: mdl-37365155

ABSTRACT

Viral tracers that enable efficient retrograde labeling of projection neurons are powerful vehicles for structural and functional dissections of the neural circuit and for the treatment of brain diseases. Currently, some recombinant adeno-associated viruses (rAAVs) based on capsid engineering are widely used for retrograde tracing, but display undesirable brain area selectivity due to inefficient retrograde transduction in certain neural connections. Here we developed an easily editable toolkit to produce high titer AAV11 and demonstrated that it exhibits potent and stringent retrograde labeling of projection neurons in adult male wild-type or Cre transgenic mice. AAV11 can function as a powerful retrograde viral tracer complementary to AAV2-retro in multiple neural connections. In combination with fiber photometry, AAV11 can be used to monitor neuronal activities in the functional network by retrograde delivering calcium-sensitive indicator under the control of a neuron-specific promoter or the Cre-lox system. Furthermore, we showed that GfaABC1D promoter embedding AAV11 is superior to AAV8 and AAV5 in astrocytic tropism in vivo, combined with bidirectional multi-vector axoastrocytic labeling, AAV11 can be used to study neuron-astrocyte connection. Finally, we showed that AAV11 allows for analyzing circuit connectivity difference in the brains of the Alzheimer's disease and control mice. These properties make AAV11 a promising tool for mapping and manipulating neural circuits and for gene therapy of some neurological and neurodegenerative disorders.


Subject(s)
Astrocytes , Neurons , Mice , Male , Animals , Mice, Transgenic , Interneurons , Brain , Dependovirus/genetics , Genetic Vectors/genetics
2.
Viruses ; 15(4)2023 03 26.
Article in English | MEDLINE | ID: mdl-37112829

ABSTRACT

Adeno-associated viruses (AAVs) have become safe and effective tools for therapeutic in vivo gene drug delivery. Among many AAV serotypes, AAV2 is the most well-characterized. Although many studies have been carried out on the engineering of the capsid VR-VIII region, few attempts have been made in the VR-IV region. Here, we targeted amino acid positions 442-469 of the VR-IV region and established an engineering paradigm of computer-aided directed evolution, based on training samples from previous datasets, to obtain a viral vector library with high diversity (~95,089). We further examined two variants selected from the library. The transduction efficiency of these two novel AAV variants, AAV2.A1 and AAV2.A2, in the central nervous system was 10-15 times higher than that of AAV2. This finding provides new vehicles for delivering gene drugs to the brain.


Subject(s)
Capsid Proteins , Capsid , Transduction, Genetic , Capsid/metabolism , Capsid Proteins/metabolism , Genetic Therapy , Gene Library , Dependovirus/physiology , Genetic Vectors/genetics
3.
Neural Regen Res ; 18(8): 1827-1833, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36751812

ABSTRACT

Analyzing the structure and function of the brain's neural network is critical for identifying the working principles of the brain and the mechanisms of brain diseases. Recombinant rabies viral vectors allow for the retrograde labeling of projection neurons and cell type-specific trans-monosynaptic tracing, making these vectors powerful candidates for the dissection of synaptic inputs. Although several attenuated rabies viral vectors have been developed, their application in studies of functional networks is hindered by the long preparation cycle and low yield of these vectors. To overcome these limitations, we developed an improved production system for the rapid rescue and preparation of a high-titer CVS-N2c-ΔG virus. Our results showed that the new CVS-N2c-ΔG-based toolkit performed remarkably: (1) N2cG-coated CVS-N2c-ΔG allowed for efficient retrograde access to projection neurons that were unaddressed by rAAV9-Retro, and the efficiency was six times higher than that of rAAV9-Retro; (2) the trans-monosynaptic efficiency of oG-mediated CVS-N2c-ΔG was 2-3 times higher than that of oG-mediated SAD-B19-ΔG; (3) CVS-N2c-ΔG could delivery modified genes for neural activity monitoring, and the time window during which this was maintained was 3 weeks; and (4) CVS-N2c-ΔG could express sufficient recombinases for efficient transgene recombination. These findings demonstrate that new CVS-N2c-ΔG-based toolkit may serve as a versatile tool for structural and functional studies of neural circuits.

4.
Int J Mol Sci ; 23(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36361595

ABSTRACT

As powerful tools for local gene delivery, adeno-associated viruses (AAVs) are widely used for neural circuit studies and therapeutical purposes. However, most of them have the characteristics of large diffusion range and retrograde labeling, which may result in off-target transduction during in vivo application. Here, in order to achieve precise gene delivery, we screened AAV serotypes that have not been commonly used as gene vectors and found that AAV13 can precisely transduce local neurons in the brain, with a smaller diffusion range than AAV2 and rigorous anterograde labeling. Then, AAV13-based single-viral and dual-viral strategies for sparse labeling of local neurons in the brains of C57BL/6 or Cre transgenic mice were developed. Additionally, through the neurobehavioral test in the ventral tegmental area, we demonstrated that AAV13 was validated for functional monitoring by means of carrying Cre recombinase to drive the expression of Cre-dependent calcium-sensitive indicator. In summary, our study provides AAV13-based toolkits for precise local gene delivery, which can be used for in situ small nuclei targeting, sparse labeling and functional monitoring.


Subject(s)
Dependovirus , Genetic Vectors , Animals , Mice , Mice, Inbred C57BL , Dependovirus/metabolism , Genetic Vectors/genetics , Gene Transfer Techniques , Mice, Transgenic , Transduction, Genetic
5.
Mol Brain ; 15(1): 13, 2022 01 29.
Article in English | MEDLINE | ID: mdl-35093138

ABSTRACT

Retrograde tracers based on viral vectors are powerful tools for the imaging and manipulation of upstream neural networks projecting to a specific brain region, and they play important roles in structural and functional studies of neural circuits. However, currently reported retrograde viral tracers have many limitations, such as brain area selectivity or the inability to retrograde label genetically defined brain-wide projection neurons. To overcome these limitations, a new retrograde tracing method, AAV-PHP.eB assisted retrograde tracing systems (PARTS) based on rabies virus, was established through brain-wide TVA-dependent targeting using an AAV-PHP.eB that efficiently crosses the blood-brain barrier in C57BL/6 J mice, and complementation of EnvA-pseudotyped defective rabies virus that specifically recognizes the TVA receptor. Furthermore, combined with Cre transgenic mice, cell-type-specific PARTS (cPARTS) was developed, which can retrograde label genetically defined brain-wide projection neurons. Our research provides new tools and technical support for the analysis of neural circuits.


Subject(s)
Rabies virus , Animals , Brain , Genetic Vectors , Interneurons , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rabies virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...