Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Ethnopharmacol ; 330: 118222, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38663778

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cinnamomum cassia Presl (Cinnamomum cassia) is a common traditional Chinese medicine, which can promote the secretion and digestion of gastric juice, improve the function of gastrointestinal tract. Cinnamaldehyde (CA) is a synthetic food flavoring in the Chinese Pharmacopoeia. AIM OF THE STUDY: This study aimed to search for the active ingredient (CA) of inhibiting H. pylori from Cinnamomum cassia, and elucidate mechanism of action, so as to provide the experimental basis for the treatment of H. pylori infection with Cinnamomum cassia. MATERIALS AND METHODS: It's in vitro and in vivo pharmacological properties were evaluated based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and an acute gastric inflammation model in mice infected with H. pylori. Drug safety was evaluated using the CCK8 method and high-dose administration in mice. The advantageous characteristics of CA in inhibiting H. pylori were confirmed using acidic conditions and in combination with the antibiotics. The mechanism underlying the action of CA on H. pylori was explored using scanning electron microscopy (SEM), adhesion experiments, biofilm inhibition tests, ATP and ROS release experiments, and drug affinity responsive target stability (DARTS) screening of target proteins. The protein function and target genes were verified by molecular docking and Real-Time quantitative reverse transcription PCR (qRT-PCR). RESULTS: The results demonstrated that CA was found to be the main active ingredient against H. pylori in Cinnamomum cassia in-vitro tests, with a MIC of 8-16 µg/mL. Moreover, CA effectively inhibited both sensitive and resistant H. pylori strains. The dual therapy of PPI + CA exhibited remarkable in vivo efficacy in the acute gastritis mouse model, superior to the standard triple therapy. DARTS, molecular docking, and qRT-PCR results suggested that the target sites of action were closely associated with GyrA, GyrB, AtpA, and TopA, which made DNA replication and transcription impossible, then leading to inhibition of bacterial adhesion and colonization, suppression of biofilm formation, and inhibition ATP and enhancing ROS. CONCLUSIONS: This study demonstrated the suitability of CA as a promising lead drug against H. pylori, The main mechanisms can target GyrA ect, leading to reduce ATP and produce ROS, which induces the apoptosis of bacterial.


Subject(s)
Acrolein , Anti-Bacterial Agents , Cinnamomum aromaticum , Helicobacter Infections , Helicobacter pylori , Microbial Sensitivity Tests , Animals , Acrolein/analogs & derivatives , Acrolein/pharmacology , Helicobacter pylori/drug effects , Cinnamomum aromaticum/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Male , Molecular Docking Simulation , Biofilms/drug effects
3.
World J Gastroenterol ; 30(1): 91-107, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38293320

ABSTRACT

BACKGROUND: The pathogenicity of Helicobacter pylori is dependent on factors including the environment and the host. Although selenium is closely related to pathogenicity as an environmental factor, the specific correlation between them remains unclear. AIM: To investigate how selenium acts on virulence factors and reduces their toxicity. METHODS: H. pylori strains were induced by sodium selenite. The expression of cytotoxin-associated protein A (CagA) and vacuolating cytotoxin gene A (VacA) was determined by quantitative PCR and Western blotting. Transcriptomics was used to analyze CagA, CagM, CagE, Cag1, Cag3, and CagT. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction, and H. pylori colonization, inflammatory reactions, and the cell adhesion ability of H. pylori were assessed. RESULTS: CagA and VacA expression was upregulated at first and then downregulated in the H. pylori strains after sodium selenite treatment. Their expression was significantly and steadily downregulated after the 5th cycle (10 d). Transcriptome analysis revealed that sodium selenite altered the levels affect H. pylori virulence factors such as CagA, CagM, CagE, Cag1, Cag3, and CagT. Of these factors, CagM and CagE expression was continuously downregulated and further downregulated after 2 h of induction with sodium selenite. Moreover, CagT expression was upregulated before the 3rd cycle (6 d) and significantly downregulated after the 5th cycle. Cag1 and Cag3 expression was upregulated and downregulated, respectively, but no significant change was observed by the 5th cycle. C57BL/6A mice were infected with the attenuated strains subjected to sodium selenite induction. The extent of H. pylori colonization in the stomach increased; however, sodium selenite also induced a mild inflammatory reaction in the gastric mucosa of H. pylori-infected mice, and the cell adhesion ability of H. pylori was significantly weakened. CONCLUSION: These results demonstrate that H. pylori displayed virulence attenuation after the 10th d of sodium selenite treatment. Sodium selenite is a low toxicity compound with strong stability that can reduce the cell adhesion ability of H. pylori, thus mitigating the inflammatory damage to the gastric mucosa.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Selenium , Animals , Mice , Antigens, Bacterial/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence Factors/genetics , Virulence Factors/metabolism , Sodium Selenite/pharmacology , Mice, Inbred C57BL , Cytotoxins , Helicobacter Infections/metabolism
4.
Antimicrob Agents Chemother ; 68(1): e0113123, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38018962

ABSTRACT

Opportunistic fungal infections, particularly caused by Candida albicans, remain a common cause of high morbidity and mortality in immunocompromised patients. The escalating prevalence of antifungal drug resistance necessitates the immediate exploration of alternative treatment strategies to combat these life-threatening fungal diseases. In this study, we investigated the antifungal efficacy of firsocostat, a human acetyl-CoA carboxylase (ACC) inhibitor, against C. albicans. Firsocostat alone displayed moderate antifungal activity, while combining it with voriconazole, itraconazole, or amphotericin B exhibited synergistic effects across almost all drug-sensitive and drug-resistant C. albicans strains tested. These observed synergies were further validated in two mouse models of oropharyngeal and systemic candidiasis, where the combination therapies demonstrated superior fungicidal effects compared to monotherapy. Moreover, firsocostat was shown to directly bind to C. albicans ACC and inhibit its enzymatic activity. Sequencing spontaneous firsocostat-resistant mutants revealed mutations mapping to C. albicans ACC, confirming that firsocostat has retained its target in C. albicans. Overall, our findings suggest that repurposing firsocostat, either alone or in combination with other antifungal agents, holds promising potential in the development of antifungal drugs and the treatment of candidiasis.


Subject(s)
Antifungal Agents , Candidiasis , Animals , Mice , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Acetyl-CoA Carboxylase , Drug Repositioning , Microbial Sensitivity Tests , Candidiasis/drug therapy , Candidiasis/microbiology , Candida albicans , Drug Resistance, Fungal , Fluconazole/pharmacology
5.
ACS Appl Mater Interfaces ; 15(30): 36280-36288, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37467491

ABSTRACT

Room-temperature photocatalytic conversion of CH4 into liquid oxygenates with O2/H2O provides an appealing route for sustainable chemical industry, which, however, suffers from poor efficiency due to the undesired carrier kinetics and low yield of reactive oxygen species of the currently available photocatalysts. Here, we report an effective surface engineering strategy where concurrent constructions of oxygen vacancies and phosphate sites on TiO2 nanosheets address the above challenge. The surface oxygen vacancies and phosphates are respective acceptors of photogenerated electrons and holes for promoted separation and migration of charge carriers. Moreover, in addition to the facilitated activation of O2 to •OH by electrons at oxygen vacancies, the surface phosphates also facilely adsorb H2O via hydrogen bonds and thus effectively transfer holes to H2O for enhanced •OH production, thereby boosting CH4 conversion. As a result, compared with TiO2 sheets with only oxygen vacancies, a 2.8 times improvement in liquid oxygenate production with near-unity selectivity is achieved by virtue of the synergy of surface oxygen vacancies and phosphate sites, together with an unprecedent quantum efficiency of 19.8% under 365 nm irradiation.

6.
Pak J Med Sci ; 39(2): 444-449, 2023.
Article in English | MEDLINE | ID: mdl-36950412

ABSTRACT

Objective: To evaluate the clinical efficacy of a chemotherapy regimen combined with levofloxacin in patients with pulmonary tuberculosis complicated with Type-2 diabetes. Methods: Total 80 patients with pulmonary tuberculosis complicated with Type-2 diabetes admitted to Baoding People's Hospital from January, 2019 to January, 2022 were randomly divided into two groups: the experimental group and the control group, with 40 cases in each group. Patients in the control group were given the conventional 2HRZE/10HRE regimen, while those in the experimental group were given the chemotherapy regimen 2HRZEL/6HRE combined with levofloxacin. Sixty four slice spiral CT was used for chest plain scan before and after treatment, respectively, to evaluate the absorption of lesions based on the range of lung lesions; Venous blood was drawn to detect the changes of oxidative stress indicators, the incidence of adverse drug reactions and the negative conversion rate of sputum tuberculosis bacteria in the two groups. Results: After treatment, the efficacy of the experimental group was 90%, which was significantly higher than that of the control group (67.5%), with a statistically significant difference (p=0.01). After treatment, CD3+, CD4+, CD4+/CD8+ and other indicators in the experimental group were significantly higher than those in the control group, with a statistically significant difference (CD3+, p=0.01; CD4+, p=0.01; CD4+/CD8+, p=0.00), while CD8+ did not change significantly (p=0.92); The incidence of adverse reactions was 52.5% in the experimental group and 47.5% in the control group, with no statistically significant difference (p=0.66); The negative conversion rate of patients in the experimental group was significantly higher than that in the control group at one month, three months and six months after treatment, with a statistically significant difference (p<0.05). Conclusion: Chemotherapy combined with levofloxacin is a safe and effective regimen for patients' pulmonary tuberculosis complicated with Type-2 diabetes, boasting a variety of benefits such as improved clinical efficacy, ameliorated cellular immune status, a high negative conversion rate of sputum tuberculosis bacteria, and no significant increase in adverse reactions.

7.
Future Oncol ; 18(36): 3993-4004, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36346067

ABSTRACT

Aim: Gastric cancer (GC) is the leading cause of cancer death, and is associated with host genetic factors. This study aimed to determine the impact of SP4 polymorphisms on GC. Materials & methods: Four hundred and eighty-nine GC patients and 481 healthy subjects were recruited. The association between single nucleotide polymorphisms and GC risk was investigated by logistic regression analysis. Results: It was observed that rs39302 and rs7811417 were related to a decreased GC risk. Stratified analyses showed that rs39302 decreased GC susceptibility at ages ≤60 years, in men, GC patients who had previously smoked and drank. rs7811417 had a risk-decreasing impact on the patients aged ≤60 years, in men, GC patients who were nonsmoking and nondrinking. rs35929923 decreased the GC risk of patients in grade III-IV and the lymph node metastasis subgroup. Conclusion: SP4 gene polymorphisms are associated with GC risk.


Subject(s)
Genetic Predisposition to Disease , Stomach Neoplasms , Male , Humans , Genotype , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Polymorphism, Single Nucleotide , Lymphatic Metastasis , Case-Control Studies , Risk Factors
8.
ACS Appl Mater Interfaces ; 14(18): 21069-21078, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35485932

ABSTRACT

Solar energy-driven direct CH4 conversion to liquid oxygenates provides a promising avenue toward green and sustainable CH4 industry, yet still confronts issues of low selectivity toward single oxygenate and use of noble-metal cocatalysts. Herein, for the first time, we report a defect-engineering strategy that rationally regulates the defective layer over TiO2 for selective aerobic photocatalytic CH4 conversion to HCHO without using noble-metal cocatalysts. (Photo)electrochemical and in situ EPR/Raman spectroscopic measurements reveal that an optimized oxygen-vacancy-rich surface disorder layer with a thickness of 1.37 nm can simultaneously promote the separation and migration of photogenerated charge carriers and enhance the activation of O2 and CH4, respectively, to •OH and •CH3 radicals, thereby synergistically boosting HCHO production in aerobic photocatalytic CH4 conversion. As a result, a HCHO production rate up to 3.16 mmol g-1 h-1 with 81.2% selectivity is achieved, outperforming those of the reported state-of-the-art photocatalytic systems. This work sheds light on the mechanism of O2-participated photocatalytic CH4 conversion on defective metal oxides and expands the application of defect engineering in designing low-cost and efficient photocatalysts.

9.
Pak J Med Sci ; 38(1): 179-184, 2022.
Article in English | MEDLINE | ID: mdl-35035422

ABSTRACT

OBJECTIVE: To observe the clinical efficacy of thymosin alpha 1 (Tα1) combined with multi-modality chemotherapy in patients with pulmonary tuberculosis (PTB) complicated with diabetes and discuss the effects of such combination therapy on lymphocyte subsets and sputum levels of cytokines. METHODS: A total of 120 patients with PTB complicated with diabetes admitted to the Affiliated Hospital of North China University of Science and Technology from January 2017 to January 2018 were included in this study and randomly divided into an experimental group (Tα1 group, n=60) and a control group (n=60). Clinical efficacy and adverse drug reactions were observed and compared between the two groups. Blood samples were collected for lymphocyte (NK cell and T cell subsets) levels by flow cytometry, and sputum samples were collected for cytokine (IL-2, IFN-γ, IL-4 and TNF-α) levels by ELISA. RESULTS: Two groups showed no statistically significant difference in sputum culture-negative conversion rate, chest lesion absorption rate, and cavity closure rate (P>0.05) after 6 months of treatment. However, after 12 months, the sputum culture-negative conversion rate, chest lesion absorption rate, and cavity closure rate in the Tα1 group increased compared with the control group, and the differences were statistically significant (P<0.05). There was a significant increase in CD3+, CD4+, NK-cells lymphocytes after six months in the Tα1 group than in the control group, whereas the CD8+, Th17, Treg lymphocytes in the Tα1 group were substantially lower than in the control group, with the differences showing statistical significance (P<0.05, respectively). After six months of treatment, the sputum supernatant levels of interleukin-4 (IL-4) and tumor necrosis factor α (TNF-α) in the Tα1 group were lower than in the control group, whereas the sputum supernatant levels of interleukin-2 (IL-2) and interferon gamma (IFN-γ) in the Tα1 group were higher than in the control group, and the differences were statistically significant (P<0.05, respectively). There was no statistically significant difference in the incidence of adverse reactions between the two groups (P>0.05). CONCLUSION: Tα1 combined with multi-modality chemotherapy has a visible curative effect on PTB patients with diabetes as it can regulate immune function and reduce the levels of inflammatory cytokines. As a safe combination therapy, it seems promising for further use in clinical practice.

10.
Thromb J ; 19(1): 8, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568153

ABSTRACT

BACKGROUND: The progression of coagulation in COVID-19 patients with confirmed discharge status and the combination of autopsy with complete hemostasis parameters have not been well studied. OBJECTIVE: To clarify the thrombotic phenomena and hemostasis state in COVID-19 patients based on epidemiological statistics combining autopsy and statistical analysis. METHODS: Using autopsy results from 9 patients with COVID-19 pneumonia and the medical records of 407 patients, including 39 deceased patients whose discharge status was certain, time-sequential changes in 11 relevant indices within mild, severe and critical infection throughout hospitalization according to the Chinese National Health Commission (NHC) guidelines were evaluated. Statistical tools were applied to calculate the importance of 11 indices and the correlation between those indices and the severity of COVID-19. RESULTS: At the beginning of hospitalization, platelet (PLT) counts were significantly reduced in critically ill patients compared with severely or mildly ill patients. Blood glucose (GLU), prothrombin time (PT), activated partial thromboplastin time (APTT), and D-dimer levels in critical patients were increased compared with mild and severe patients during the entire admission period. The International Society on Thrombosis and Haemostasis (ISTH) disseminated intravascular coagulation (DIC) score was also high in critical patients. In the relatively late stage of nonsurvivors, the temporal changes in PLT count, PT, and D-dimer levels were significantly different from those in survivors. A random forest model indicated that the most important feature was PT followed by D-dimer, indicating their positive associations with disease severity. Autopsy of deceased patients fulfilling diagnostic criteria for DIC revealed microthromboses in multiple organs. CONCLUSIONS: Combining autopsy data, time-sequential changes and statistical methods to explore hemostasis-relevant indices among the different severities of the disease helps guide therapy and detect prognosis in COVID-19 infection.

11.
Article in English | MEDLINE | ID: mdl-33318002

ABSTRACT

Helicobacter pylori is a major global pathogen and has been implicated in gastritis, peptic ulcer, and gastric carcinoma. The efficacy of the extensive therapy of H. pylori infection with antibiotics is compromised by the development of drug resistance and toxicity toward human gut microbiota, which urgently demands novel and selective antibacterial strategies. The present study was mainly performed to assess the in vitro and in vivo effects of a natural herbal compound, dihydrotanshinone I (DHT), against standard and clinical H. pylori strains. DHT demonstrated effective antibacterial activity against H. pyloriin vitro (MIC50/90, 0.25/0.5 µg/ml), with no development of resistance during continuous serial passaging. Time-kill curves showed strong time-dependent bactericidal activity for DHT. Also, DHT eliminated preformed biofilms and killed biofilm-encased H. pylori cells more efficiently than the conventional antibiotic metronidazole. In mouse models of multidrug-resistant H. pylori infection, dual therapy with DHT and omeprazole showed in vivo killing efficacy superior to that of the standard triple-therapy approach. Moreover, DHT treatment induces negligible toxicity against normal tissues and exhibits a relatively good safety index. These results suggest that DHT could be suitable for use as an anti-H. pylori agent in combination with a proton pump inhibitor to eradicate multidrug-resistant H. pylori.


Subject(s)
Anti-Ulcer Agents , Helicobacter Infections , Helicobacter pylori , Pharmaceutical Preparations , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Clarithromycin/therapeutic use , Drug Therapy, Combination , Helicobacter Infections/drug therapy , Humans , Metronidazole/pharmacology , Metronidazole/therapeutic use , Omeprazole
12.
R Soc Open Sci ; 5(8): 180897, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30225079

ABSTRACT

Resulting from the drastic increase of atmospheric CO2 concentration day by day, global warming has become a serious environmental issue nowadays. The fixation of CO2 to obtain desirable, economically competitive chemicals has recently received considerable attention. This work investigates the fixation of CO2 along with three bromopyridines via a facile electrochemical method using a silver cathode to synthesize picolinic acids, which are important industrial and fine chemicals. Cyclic voltammetry is employed to investigate the cyclic voltammetric behaviour of bromopyridines. In addition, systematic study is conducted to study the relationships between the picolinic acids' yield and the electrolysis conditions and intrinsic parameters. The results show that the target picolinic acids' yields are strongly dependent on various conditions such as solvent, supporting electrolyte, current density, cathode material, charge passed, temperature and the nature of the substrates. Moreover, in the studied electrode materials such as Ag, Ni, Ti, Pt and GC, electrolysis and cyclic voltammetry show that Ag has a good electrocatalytic effect on the reduction and carboxylation of bromopyridine. This facile electrochemical route for fixation of CO2 provides an indispensable reference for the conversion and utilization of CO2 under mild conditions.

13.
Drug Des Devel Ther ; 12: 1533-1544, 2018.
Article in English | MEDLINE | ID: mdl-29910601

ABSTRACT

PURPOSE: Mycobacterium tuberculosis is a serious public health problem affecting hundreds of millions of elderly people worldwide, which is difficult to be treated by traditional methods because of the peculiarity of skeletal system and liver damage caused by high-dose administration. In this research, a porous drug release system has been attempted to encapsulate rifampicin (RIF) into poly (ε-caprolactone) (PCL) microspheres to improve the efficacy and benefit of anti-tuberculosis drug in skeletal system. MATERIALS AND METHODS: The microspheres prepared by two different methods, oil-in-oil (o/o) emulsion solvent evaporation method and oil-in-water (o/w) method, were characterized in terms of morphology, size, encapsulation efficiency, drug distribution, degradation, and crystallinity. RESULTS: The microspheres exhibited a porous structure with evenly drug distribution prepared by o/o emulsion solvent evaporation method, and their diameter ranged from 50.54 to 57.34 µm. The encapsulation efficiency was up to 61.86% when drug-loading content was only 1.51%, and showed a little decrease with the drug-loading content increasing. In vitro release studies revealed that the drug release from porous microspheres was controlled by non-Fickian diffusion, and almost 80% of the RIF were completely released after 10 days. The results of RIF-loaded microspheres on the antibacterial activity against Staphylococcus aureus proved that the porous microspheres had strong antibacterial ability. In addition, the polymer crystallinity had prominent influence on the degradation rate of microspheres regardless of the morphology. CONCLUSION: It was an efficient way to entrap slightly water-soluble drug like RIF into PCL by o/o emulsion solvent evaporation method with uniform drug distribution. The RIF-loaded porous PCL microspheres showed the combination of good antimicrobial properties and excellent cytocompatibility, and it could generate gentle environment by PCL slow degradation.


Subject(s)
Drug Compounding , Drug Delivery Systems , Microspheres , Polyesters/chemistry , Rifampin/chemistry , Anti-Bacterial Agents/pharmacology , Drug Liberation , Porosity , Rifampin/pharmacology
14.
Mater Sci Eng C Mater Biol Appl ; 33(6): 3138-45, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23706193

ABSTRACT

Low monomer-polymer conversion is the key factor leading to cytotoxicity for resin-containing restorative materials. This paper provides a new root canal filling system based on self-curing injectable polyurethane which can achieve high conversion in a short time. Traced FTIR spectra show more than 90% NCO group participated in the curing reaction after 4h, and only about 5% remained after 24h. The calculated data also testified the curing process supports a third-order reaction, and this efficient and sufficient reaction is postulated to weaken the toxic stimulation. By culturing with L929 murine fibroblasts, the PU sealer is shown to be favorable for cell attachment and proliferation. Then physicochemical properties of the injectable PU-based sealer were evaluated according to the Standard [ISO 6876:2001 (E)] for clinical application. A series of physicochemical properties of PU sealer have been tested comparing with AH Plus and Apexit Plus. And the results present that the self-curing PU sealer could not only match the clinic requirements, but even has better properties than the other two commercial sealers. We expect the high conversion PU sealer has a tremendous potential in the field of root canal filling after further biological evaluation.


Subject(s)
Polyurethanes/chemistry , Root Canal Filling Materials/chemistry , Animals , Calcium Compounds/chemistry , Calcium Hydroxide/chemistry , Cell Line , Cell Survival/drug effects , Mice , Polyurethanes/toxicity , Root Canal Filling Materials/toxicity , Spectroscopy, Fourier Transform Infrared , Tungsten Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...