Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Opt Lett ; 49(11): 2966-2969, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824304

ABSTRACT

Over the past decades, spin qubits in silicon carbide (SiC) have emerged as promising platforms for a wide range of quantum technologies. The fluorescence intensity holds significant importance in the performance of quantum photonics, quantum information process, and sensitivity of quantum sensing. In this work, a dual-layer Au/SiO2 dielectric cavity is employed to enhance the fluorescence intensity of a shallow silicon vacancy ensemble in 4H-SiC. Experimental results demonstrate an effective fourfold augmentation in fluorescence counts at saturating laser power, corroborating our theoretical predictions. Based on this, we further investigate the influence of dielectric cavities on the contrast and linewidth of optically detected magnetic resonance (ODMR). There is a 1.6-fold improvement in magnetic field sensitivity. In spin echo experiments, coherence times remain constant regardless of the thickness of dielectric cavities. These experiments pave the way for broader applications of dielectric cavities in SiC-based quantum technologies.

2.
Opt Express ; 31(10): 15592-15598, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157657

ABSTRACT

Divacancy in silicon carbide has become an important solid-state system for quantum metrologies. To make it more beneficial for practical applications, we realize a fiber-coupled divacancy-based magnetometer and thermometer simultaneously. First, we realize an efficient coupling between the divacancy in a silicon carbide slice with a multimode fiber. Then the optimization of the power broadening in optically detected magnetic resonance (ODMR) of divacancy is performed to obtain a higher sensing sensitivity of 3.9 µT/Hz1/2. We then use it to detect the strength of an external magnetic field. Finally, we use the Ramsey methods to realize a temperature sensing with a sensitivity of 163.2 mK/Hz1/2. The experiments demonstrate that the compact fiber-coupled divacancy quantum sensor can be used for multiple practical quantum sensing.

3.
Nanoscale ; 15(18): 8432-8436, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37093058

ABSTRACT

Color centers in silicon carbide have become potentially versatile quantum sensors. Particularly, wide temperature-range temperature sensing has been realized in recent years. However, the sensitivity is limited due to the short dephasing time of the color centers. In this work, we developed a high-sensitivity silicon carbide divacancy-based thermometer using the thermal Carr-Purcell-Meiboom-Gill (TCPMG) method. First, the zero-field splitting D of the PL6 divacancy as a function of temperature was measured with a linear slope of -99.7 kHz K-1. The coherence times of TCPMG pulses linearly increased with the pulse number and the longest coherence time was about 21 µs, which was ten times higher than . The corresponding temperature-sensing sensitivity was 13.4 mK Hz-1/2, which was about 15 times higher than previous results. Finally, we monitored the laboratory temperature variations for 24 hours using the TCMPG pulse. The experiments pave the way for the application of silicon carbide-based high-sensitivity thermometers in the semiconductor industry, biology, and materials sciences.

4.
Opt Lett ; 48(6): 1423-1426, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36946943

ABSTRACT

Silicon vacancies in silicon carbide have drawn much attention for various types of quantum sensing. However, most previous experiments are realized using confocal scanning systems, which limits their practical applications. In this work, we demonstrate a compact fiber-integrated silicon carbide silicon-vacancy-based magnetometer at room temperature. First, we effectively couple the silicon vacancy in a tiny silicon carbide slice with an optical fiber tip and realize the readout of the spin signal through the fiber at the same time. We then study the optically detected magnetic resonance spectra at different laser and microwave powers, obtaining an optimized magnetic field sensitivity of 12.3 µT/Hz 12. Based on this, the magnetometer is used to measure the strength and polar angle of an external magnetic field. Through these experiments, we have paved the way for fiber-integrated silicon-vacancy-based magnetometer applications in practical environments, such as geophysics and biomedical sensing.

SELECTION OF CITATIONS
SEARCH DETAIL