Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(6)2023 Mar 17.
Article in English | MEDLINE | ID: mdl-36984285

ABSTRACT

In this paper, a new nanoscale metal Ti particle-reinforced Mg-3Al-1Zn matrix composite was successfully designed and prepared, which is mainly characterized by the fact that in addition to the "light" advantages of magnesium matrix composite, it also realizes bidirectional improvement of strength and ductility of the composite, and can be used as an alternative material for military light vehicle armor and individual armor. The SEM test shows that the nano-Ti particles are uniformly distributed at the grain boundary under the extruded state, which nails the grain boundary, inhibits the grain growth, and significantly refines the grain. XRD tests show that the addition of nano-Ti particles increases the crystallinity of the composite, which is consistent with the SEM test results. In addition, the EBSD test shows that the weakening of the texture of Ti/Mg-3Al-1Zn matrix composites and the increase in the starting probability of slip system are the main reasons for the improvement in ductility. Mechanical tests show that the yield strength, tensile strength, and elongation of the 0.5 wt% Ti/Mg-3Al-1Zn matrix composites exceed the peak values of ASTM B107/B107M-13 by 38.6%, 26.7%, and 20%, respectively.

2.
Materials (Basel) ; 16(3)2023 Jan 29.
Article in English | MEDLINE | ID: mdl-36770146

ABSTRACT

In the field of metal matrix composites, it is a great challenge to improve the strength and elongation of magnesium matrix composites simultaneously. In this work, xTC4/AZ31 (x = 0.5, 1, 1.5 wt.%) composites were fabricated by spark plasma sintering (SPS) followed by hot extrusion. Scanning electron microscopy (SEM) showed that nano-TC4 (Ti-6Al-4V) was well dispersed in the AZ31 matrix. We studied the microstructure evolution and tensile properties of the composites, and analyzed the strengthening mechanism of nano-TC4 on magnesium matrix composites. The results showed that magnesium matrix composites with 1 wt.%TC4 had good comprehensive properties; compared with the AZ31 matrix, the yield strength (YS) was increased by 20.4%, from 162 MPa to 195 MPa; the ultimate tensile strength (UTS) was increased by 11.7%, from 274 MPa to 306 MPa, and the failure strain (FS) was increased by 21.1%, from 7.6% to 9.2%. The improvement in strength was mainly due to grain refinement and good interfacial bonding between nano-TC4 and the Mg matrix. The increase in elongation was the result of grain refinement and a weakened texture.

SELECTION OF CITATIONS
SEARCH DETAIL
...