Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Transl Med ; 22(1): 393, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685045

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with high probability of recurrence and distant metastasis. Liver metastasis is the predominant metastatic mode developed in most pancreatic cancer cases, which seriously affects the overall survival rate of patients. Abnormally activated endoplasmic reticulum stress and lipid metabolism reprogramming are closely related to tumor growth and metastasis. This study aims to construct a prognostic model based on endoplasmic reticulum stress and lipid metabolism for pancreatic cancer, and further explore its correlation with tumor immunity and the possibility of immunotherapy. METHODS: Transcriptomic and clinical data are acquired from TCGA, ICGC, and GEO databases. Potential prognostic genes were screened by consistent clustering and WGCNA methods, and the whole cohort was randomly divided into training and testing groups. The prognostic model was constructed by machine learning method in the training cohort and verified in the test, TCGA and ICGC cohorts. The clinical application of this model and its relationship with tumor immunity were analyzed, and the relationship between endoplasmic reticulum stress and intercellular communication was further explored. RESULTS: A total of 92 characteristic genes related to endoplasmic reticulum stress, lipid metabolism and liver metastasis were identified in pancreatic cancer. We established and validated a prognostic model for pancreatic cancer with 7 signatures, including ADH1C, APOE, RAP1GAP, NPC1L1, P4HB, SOD2, and TNFSF10. This model is considered to be an independent prognosticator and is a more accurate predictor of overall survival than age, gender, and stage. TIDE score was increased in high-risk group, while the infiltration levels of CD8+ T cells and M1 macrophages were decreased. The number and intensity of intercellular communication were increased in the high ER stress group. CONCLUSIONS: We constructed and validated a novel prognostic model for pancreatic cancer, which can also be used as an instrumental variable to predict the prognosis and immune microenvironment. In addition, this study revealed the effect of ER stress on cell-cell communication in the tumor microenvironment.


Subject(s)
Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Lipid Metabolism , Liver Neoplasms , Pancreatic Neoplasms , Single-Cell Analysis , Transcriptome , Humans , Endoplasmic Reticulum Stress/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Lipid Metabolism/genetics , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Transcriptome/genetics , Prognosis , Male , Female , Middle Aged , Gene Expression Profiling , Reproducibility of Results , Cohort Studies
2.
MedComm (2020) ; 5(2): e495, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38374872

ABSTRACT

Epigenetic modifications are defined as heritable changes in gene activity that do not involve changes in the underlying DNA sequence. The oncogenic process is driven by the accumulation of alterations that impact genome's structure and function. Genetic mutations, which directly disrupt the DNA sequence, are complemented by epigenetic modifications that modulate gene expression, thereby facilitating the acquisition of malignant characteristics. Principals among these epigenetic changes are shifts in DNA methylation and histone mark patterns, which promote tumor development and metastasis. Notably, the reversible nature of epigenetic alterations, as opposed to the permanence of genetic changes, positions the epigenetic machinery as a prime target in the discovery of novel therapeutics. Our review delves into the complexities of epigenetic regulation, exploring its profound effects on tumor initiation, metastatic behavior, metabolic pathways, and the tumor microenvironment. We place a particular emphasis on the dysregulation at each level of epigenetic modulation, including but not limited to, the aberrations in enzymes responsible for DNA methylation and histone modification, subunit loss or fusions in chromatin remodeling complexes, and the disturbances in higher-order chromatin structure. Finally, we also evaluate therapeutic approaches that leverage the growing understanding of chromatin dysregulation, offering new avenues for cancer treatment.

3.
Knee Surg Sports Traumatol Arthrosc ; 31(10): 4546-4550, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37308663

ABSTRACT

PURPOSE: There is currently no consensus on the optimal drilling direction of the fibular bone tunnel for anterior talofibular ligament (ATFL) reconstruction, and few studies have investigated the potential injury to the peroneus longus and brevis tendons and the possibility of fibular fractures during the drilling process. The aim of this study was to assess the potential risk of drilling the tunnel from different directions and determine the most appropriate tunnel direction. The hypothesis was that drilling the tunnel in the 45-degree direction would be the safest and most suitable for the fibular tunnel. METHODS: Forty-eight fibular tunnels were drilled on fresh ankle specimens using a K-wire guide and a 5.0 mm hollow drill. Three tunnel orientations were created, parallel to the sagittal plane of the long axis of the fibula and angled 30°, 45°, and 60° to the coronal plane. The length of the fibular tunnel and the distances from the outlet of the K-wire to the peroneus longus and brevis tendons were measured. The occurrence of a fibula fracture was also observed. RESULTS: The lengths of the bone tunnels in the three groups were 32.9 ± 6.1 mm (30°), 27.2 ± 4.4 mm (45°) and 23.6 ± 4.0 mm (60°). The length of the tunnel drilled at 30° was the longest when compared with that of the tunnels drilled at 45° and 60° (all p values < 0.05). The distances from the outlet of the K-wire to the peroneus longus tendon were 3.0 ± 3.8 mm (30°), 3.8 ± 3.2 mm (45°) and 5.3 ± 1.8 mm (60°), and the distances to the peroneus brevis tendon were 4.2 ± 4.0 mm (30°), 6.1 ± 3.8 mm (45°), 7.9 ± 3.5 mm (60°). In terms of protecting the peroneus longus and brevis tendons, drilling in the 60° direction was better than drilling in the 30° and 45° directions (all p values < 0.05). The risk of injury to the peroneal longus and brevis tendons was 62.5% (30°), 31.3% (45°), and 0% (60°). Although no fibular fractures were observed in any of the three directions, drilling the bone tunnel in the 60° direction disrupted the lateral cortex of the fibula. CONCLUSION: This study shows that drilling the tunnel in the 45° direction is less likely to cause injury to the peroneus longus and brevis tendons, while ensuring that the tunnel has a sufficient length and avoiding fracturing the distal fibula. Drilling a fibular bone tunnel in a 45° direction is safer and recommended for ATFL reconstruction.


Subject(s)
Fibula , Lateral Ligament, Ankle , Humans , Fibula/surgery , Lateral Ligament, Ankle/surgery , Ankle Joint/surgery , Tendons/surgery , Ankle
4.
Anal Chem ; 95(8): 3996-4004, 2023 02 28.
Article in English | MEDLINE | ID: mdl-36795559

ABSTRACT

Specific imaging of cellular senescence emerges as a promising strategy for early diagnosis and treatment of various age-related diseases. The currently available imaging probes are routinely designed by targeting a single senescence-related marker. However, the inherently high heterogeneity of senescence makes them inaccessible to achieve specific and accurate detection of broad-spectrum cellular senescence. Here, we report the design of a dual-parameter recognition fluorescent probe for precise imaging of cellular senescence. This probe remains silent in non-senescent cells, yet produces bright fluorescence after sequential responses to two senescence-associated markers, namely, SA-ß-gal and MAO-A. In-depth studies reveal that this probe allows for high-contrast imaging of senescence, independent of the cell source or stress type. More impressively, such dual-parameter recognition design further allows it to distinguish senescence-associated SA-ß-gal/MAO-A from cancer-related ß-gal/MAO-A, compared to commercial or previous single-marker detection probes. This study offers a valuable molecular tool for imaging cellular senescence, which is expected to significantly expand the basic studies on senescence and facilitate advances of senescence-related disease theranostics.


Subject(s)
Cellular Senescence , Fluorescent Dyes , Fluorescence , beta-Galactosidase/metabolism , Monoamine Oxidase
5.
Angew Chem Int Ed Engl ; 61(12): e202115764, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35037392

ABSTRACT

Specific intervention of senescent cells (SnCs) is emerging as a powerful means to counteract aging and age-related diseases. Canonical methods are generally designed to target SnC-associated signaling pathways, which are however dynamically changing and highly heterogeneous in SnCs, significantly limiting the effectiveness. Here, we present a tailor-made molecular prodrug targeting lysosome dysfunction, a unique feature shared by virtually all types of SnCs. The prodrug comprises three modules all targeting the altered lysosomal programs in SnCs, namely, a recognizing unit towards the elevated lysosome content, a linker cleavable by the activated lysosomal enzyme, and a lysosomotropic agent targeting the increased lysosomal membrane sensitivity. This spatially confined design enables killing broad-spectrum SnCs, with high specificity over non-SnCs. Along with in vivo benefits, this work offers a way to significantly expand the applicability of senotherapy in a wide range of diseases.


Subject(s)
Prodrugs , Cellular Senescence , Lysosomes , Prodrugs/pharmacology , Signal Transduction
6.
Front Immunol ; 13: 1076883, 2022.
Article in English | MEDLINE | ID: mdl-36685496

ABSTRACT

Tumor immunotherapy, particularly the use of immune checkpoint inhibitors, has yielded impressive clinical benefits. Therefore, it is critical to accurately screen individuals for immunotherapy sensitivity and forecast its efficacy. With the application of artificial intelligence (AI) in the medical field in recent years, an increasing number of studies have indicated that the efficacy of immunotherapy can be better anticipated with the help of AI technology to reach precision medicine. This article focuses on the current prediction models based on information from histopathological slides, imaging-omics, genomics, and proteomics, and reviews their research progress and applications. Furthermore, we also discuss the existing challenges encountered by AI in the field of immunotherapy, as well as the future directions that need to be improved, to provide a point of reference for the early implementation of AI-assisted diagnosis and treatment systems in the future.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Genomics , Forecasting , Immunotherapy , Neoplasms/therapy , Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...