Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters










Publication year range
1.
Chemosphere ; 359: 142348, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759803

ABSTRACT

Efficient remediation of soil contaminated by polycyclic aromatic hydrocarbons (PAHs) is challenging. To determine whether soil ecoenzyme stoichiometry influences PAH degradation under biostimulation and bioaugmentation, this study initially characterized soil ecoenzyme stoichiometry via a PAH degradation experiment and subsequently designed a validation experiment to answer this question. The results showed that inoculation of PAH degradation consortia ZY-PHE plus vanillate efficiently degraded phenanthrene with a K value of 0.471 (depending on first-order kinetics), followed by treatment with ZY-PHE and control. Ecoenzyme stoichiometry data revealed that the EEAC:N, vector length and angle increased before day five and decreased during the degradation process. In contrast, EEAN:P decreased and then increased. These results indicated that the rapid PAH degradation period induced more C limitation and organic P mineralization. Correlation analysis indicated that the degradation rate K was negatively correlated with vector length, EEAC:P, and EEAN:P, suggesting that C limitation and relatively less efficient P mineralization could inhibit biodegradation. Therefore, incorporating liable carbon and acid phosphatase or soluble P promoted PAH degradation in soils with ZY-PHE. This study provides novel insights into the relationship between soil ecoenzyme stoichiometry and PAH degradation. It is suggested that soil ecoenzyme stoichiometry be evaluated before designing bioremeiation stragtegies for PAH contanminated soils.


Subject(s)
Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons , Soil Microbiology , Soil Pollutants , Soil , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/chemistry , Soil Pollutants/metabolism , Soil/chemistry , Phenanthrenes/metabolism , Kinetics
2.
Environ Res ; 244: 117904, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38092239

ABSTRACT

Deciphering the pivotal components of nutrient metabolism in compost is of paramount importance. To this end, ecoenzymatic stoichiometry, enzyme vector modeling, and statistical analysis were employed to explore the impact of exogenous ore improver on nutrient changes throughout the livestock composting process. The total phosphorus increased from 12.86 to 18.72 g kg-1, accompanied by a marked neutralized pH with ore improver, resulting in the Carbon-, nitrogen-, and phosphorus-related enzyme activities decreases. However, the potential C:P and N:P acquisition activities represented by ln(ßG + CB): ln(ALP) and ln(NAG): ln(ALP), were increased with ore improver addition. Based on the ecoenzymatic stoiometry theory, these changes reflect a decreasing trend in the relative P/N limitation, with pH and total phosphorus as the decisive factors. Our study showed that the practical employment of eco stoichiometry could benefit the manure composting process. Moreover, we should also consider the ecological effects from pH for the waste material utilization in sustainable agriculture.


Subject(s)
Composting , Ecosystem , Animals , Manure , Livestock/metabolism , Soil , Nitrogen/analysis , Carbon/metabolism , Phosphorus
3.
Appl Microbiol Biotechnol ; 107(21): 6591-6605, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37688597

ABSTRACT

Climate change and anthropogenic exploitation have led to the gradual salinization of inland waters worldwide. However, the impacts of this process on the prokaryotic plankton communities and their role in biogeochemical cycles in the inland lake are poorly known. Here, we take a space-for-time substitution approach, using 16S rRNA gene amplicon sequencing and metagenomic sequencing. We analyzed the prokaryotic plankton communities of 11 lakes in northwest China, with average water salinities ranging from 0.002 to 14.370%. The results demonstrated that, among the various environmental parameters, salinity was the most important driver of prokaryotic plankton ß-diversity (Mantel test, r = 0.53, P < 0.001). (1) Under low salinity, prokaryotic planktons were assembled by stochastic processes and employed diverse halotolerant strategies, including the synthesis and uptake of compatible solutes and extrusion of Na+ or Li+ in exchange for H+. Under elevated salinity pressure, strong homogeneous selection meant that only planktonic prokaryotes showing an energetically favorable halotolerant strategy employing an Mnh-type Na+/H+ antiporter remained. (2) The decreasing taxonomic diversity caused by intense environmental filtering in high-salinity lakes impaired functional diversity related to substance metabolism. The prokaryotes enhanced the TCA cycle, carbon fixation, and low-energy-consumption amino acid biosynthesis in high-salinity lakes. (3) Elevated salinity pressure decreased the negative:positive cohesion and the modularity of the molecular ecology networks for the planktonic prokaryotes, indicating a precarious microbial network. Our findings provide new insights into plankton ecology and are helpful for the protecting of the biodiversity and function of inland lakes against the background of salinization. KEY POINTS: • Increased salinity enhances homogeneous selection in the microbial assembly. • Elevated salinity decreases the microbial co-occurrence networks stability. • High salinity damages the microbial function diversity.

4.
J Vis Exp ; (199)2023 09 08.
Article in English | MEDLINE | ID: mdl-37747205

ABSTRACT

Spinal cord stimulation (SCS) can effectively restore locomotor function after spinal cord injury (SCI). Because the motor neurons are the final unit to execute sensorimotor behaviors, directly studying the electrical responses of motor neurons with SCS can help us understand the underlying logic of spinal motor modulation. To simultaneously record diverse stimulus characteristics and cellular responses, a patch-clamp is a good method to study the electrophysiological characteristics at a single-cell scale. However, there are still some complex difficulties in achieving this goal, including maintaining cell viability, quickly separating the spinal cord from the bony structure, and using the SCS to successfully induce action potentials. Here, we present a detailed protocol using patch-clamp to study the electrical responses of motor neurons to SCS with high spatiotemporal resolution, which can help researcher improve their skills in separating the spinal cord and maintaining the cell viability at the same time to smoothly study the electrical mechanism of SCS on motor neuron and avoid unnecessary trial and mistake.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Humans , Motor Neurons , Action Potentials
5.
Bioresour Technol ; 385: 129309, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37311530

ABSTRACT

A novel heterotrophic nitrification and aerobic denitrification (HN-AD) bacterium D1-1 was identified as Pseudomonas nicosulfuronedens D1-1. Strain D1-1 removed 97.24%, 97.25%, and 77.12% of 100 mg/L NH4+-N, NO3--N, and NO2--N, with corresponding maximum removal rates of 7.42, 8.69, and 7.15 mg·L-1·h-1, respectively. Strain D1-1 bioaugmentation enhanced woodchip bioreactor performance with an average NO3--N removal efficiency of 93.8%. Bioaugmentation enriched N cyclers along with increased bacterial diversity and predicted genes for denitrification, DNRA (dissimilatory nitrate reduction to ammonium), and ammonium oxidation. It also reduced local selection and network modularity from 4.336 to 0.934, resulting in predicted nitrogen (N) cycling genes shared by more modules. These observations suggested that bioaugmentation could enhance the functional redundancy to stabilize the NO3--N removal performance. This study provides insights into the potential applications of HN-AD bacteria in bioremediation or other environmental engineering fields, relying on their ability to shape bacterial communities.


Subject(s)
Ammonium Compounds , Pseudomonas , Denitrification , Aerobiosis , Nitrification , Bioreactors , Nitrogen , Heterotrophic Processes , Nitrites
6.
Physiol Meas ; 44(5)2023 05 31.
Article in English | MEDLINE | ID: mdl-37172607

ABSTRACT

Objective.To date, measurement of the conductivity and relative permittivity properties of anisotropic biological tissues using electrical impedance myography (EIM) has only been possible through an invasiveex vivobiopsy procedure. Here, we present a novel forward and inverse theoretical modeling framework to estimate these properties combining surface and needle EIM measurements.Methods. The framework here presented models the electrical potential distribution within a monodomain, homogeneous, and three-dimensional anisotropic tissue. Finite-element method (FEM) simulations and tongue experimental results verify the validity of our method to reverse-engineer three-dimensional conductivity and relative permittivity properties from EIM measurements.Results. FEM-based simulations confirm the validity of our analytical framework, with relative errors between analytical predictions and simulations smaller than 0.12% and 2.6% in a cuboid and tongue model, respectively. Experimental results confirm qualitative differences in the conductivity and the relative permittivity properties in thex,y, andzdirections.Conclusion. Our methodology enables EIM technology to reverse-engineer the anisotropic tongue tissue conductivity and relative permittivity properties, thus unfolding full forward and inverse EIM predictability capabilities.Significance. This new method of evaluating anisotropic tongue tissue will lead to a deeper understanding of the role of biology necessary for the development of new EIM tools and approaches for tongue health measurement and monitoring.


Subject(s)
Muscle, Skeletal , Myography , Electric Impedance , Electric Conductivity , Tongue
7.
Arch Microbiol ; 205(5): 207, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101014

ABSTRACT

The type VI secretion system (T6SS) is important for interbacterial competition and virulence in Vibrio species. It is generally agreed that T6SS provides a fitness advantage to Vibrios. Some Vibrio species possess one, while others possess two T6SSs. Even within the same Vibrio species, different strains can harbor a variable number of T6SSs. Such is the case in V. fluvialis, an opportunistic human pathogen, that some V. fluvialis strains do not harbor T6SS1. This study found that Amphritea, Marinomonas, Marinobacterium, Vibrio, Photobacterium, and Oceanospirillum species have genes encoding V. fluvialis T6SS1 homologs. The cladogram of T6SS1 genes suggested that these genes appeared to be horizontally acquired by V. fluvialis, V. furnissii, and some other Vibrio species, when compared with the species tree. Codon insertions, codon deletions, nonsense mutations, and the insertion sequence are found in many genes, such as clpV1, tssL1, and tssF1, which encode structure components of T6SS1 in V. furnissii and V. fluvialis. Codon deletion events are more common than codon insertion, insertion sequence disruption, and nonsense mutation events in genes that encode components of T6SS1. Similarly, codon insertions and codon deletions are found in genes relevant to T6SS2, including tssM2, vgrG2 and vasH, in V. furnissii and V. fluvialis. These mutations are likely to disable the functions of T6SSs. Our findings indicate that T6SS may have a fitness disadvantage in V. furnissii and V. fluvialis, and the loss of function in T6SS may help these Vibrio species to survive under certain conditions.


Subject(s)
DNA Transposable Elements , Vibrio , Humans , Vibrio/genetics , Genomics , Mutation
8.
Environ Sci Technol ; 57(12): 4905-4914, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36917516

ABSTRACT

Microbial consortia have opened new avenues for heavy-metal remediation. However, the limited understanding of the overall effect of interspecific interactions on remediation efficacy hinders its application. Here, the effects of multispecies growth and biofilm formation on Cd immobilization were explored from direct and multiple interactions through random combinations of two or three rhizosphere bacteria. In monocultures, Cd stress resulted in an average decrease in planktonic biomass of 26%, but through cooperation, the decrease was attenuated in dual (21%) and triple cultures (13%), possibly involving an increase in surface polysaccharides. More than 65% of the co-cultures exhibited induction of biofilm formation under Cd stress, which further enhanced the role of biofilms in Cd immobilization. Notably, excellent biofilm-forming ability or extensive social induction makes Pseudomonas putida and Brevundimonas diminuta stand out in multispecies biofilm formation and Cd immobilization. These two core species significantly increase the colonization of soil microorganisms on rice roots compared to the control, resulting in a 40% decrease in Cd uptake by rice. Our study enhances the understanding of bacterial interactions under Cd stress and provides a novel strategy for adjusting beneficial soil consortia for heavy-metal remediation.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Cadmium , Bacteria , Soil , Rhizosphere
9.
Environ Res ; 216(Pt 4): 114708, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36372146

ABSTRACT

The rice-crayfish co-culture (RC) is a putative sustainable agricultural system. However, studies on the ecological effects of long-term RC systems were still lacking. Here, we compare enzymatic stoichiometry, microbial necromass, and microbial community between the RC and rice monoculture systems (RM). Soil enzymatic stoichiometry analysis showed that after transformation from RM to RC for about three years, ammonium nitrogen (NH4+-N) availability increased to depress relative N-acquiring enzyme production, especially for leucine aminopeptidase. The contents of microbial necromass increased approximately onefold in the RC system, making microbial necromass' contribution to the soil nitrogen (N) reach up to 46.72%. Elevation in NH4+ decreased N-acquiring enzyme, and a relatively more effective C acquisition likely benefited microbial necromass retention and production in the RC system. This study highlights that the rice-crayfish co-culture could modify the N pool of the surface paddy soil.


Subject(s)
Oryza , Soil , Animals , Nitrogen/analysis , Astacoidea , Soil Microbiology , Coculture Techniques
10.
Environ Sci Technol ; 56(15): 10656-10667, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35876052

ABSTRACT

Bacterial metal detoxification mechanisms have been well studied for centuries in pure culture systems. However, profiling metal resistance determinants at the community level is still a challenge due to the lack of comprehensive and reliable quantification tools. Here, a novel high-throughput quantitative polymerase chain reaction (HT-qPCR) chip, termed the metal resistance gene (MRG) chip, has been developed for the quantification of genes involved in the homeostasis of 9 metals. The MRG chip contains 77 newly designed degenerate primer sets and 9 published primer sets covering 56 metal resistance genes. Computational evaluation of the taxonomic coverage indicated that the MRG chip had a broad coverage matching 2 kingdoms, 29 phyla, 64 classes, 130 orders, 226 families, and 382 genera. Temperature gradient PCR and HT-qPCR verified that 57 °C was the optimal annealing temperature, with amplification efficiencies of over 94% primer sets achieving 80-110%, with R2 > 0.993. Both computational evaluation and the melting curve analysis of HT-qPCR validated a high specificity. The MRG chip has been successfully applied to characterize the distribution of diverse metal resistance determinants in natural and human-related environments, confirming its wide scope of application. Collectively, the MRG chip is a powerful and efficient high-throughput quantification tool for exploring the microbial metal resistome.


Subject(s)
Bacteria , Metals, Heavy , Bacteria/genetics , Humans , Real-Time Polymerase Chain Reaction
11.
Sci Total Environ ; 838(Pt 3): 156393, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35660450

ABSTRACT

Heavy metal remediation treatments might influence functional microbial community assembly. Dissimilatory nitrate reduction to ammonia (DNRA) contributes to the nitrogen retention processes in soil ecosystems. We assumed that remediation might reduce heavy metal toxicity and increase some available nutrients for the DNRA microbes, thus balancing the deterministic and stochastic process for DNRA community assembly. Here, we investigated the process of DNRA bacterial community assembly under different heavy metal remediation treatments (including control, biochar, limestone, rice straw, rice straw + limestone, and biochar + limestone) in an Alfisol soil. The abundance of DNRA bacteria diverged across treatments. The α-diversity of the DNRA bacterial community was correlated with pH, available phosphorus (AP), ammonium (NH4+), and extractable Fe (EFe). Metal Cd and Fe significantly affected the abundance of the nrfA gene. The ß-diversity was associated with pH, NH4+, and EFe. Deterministic processes dominantly drove the assembly processes of the DNRA bacterial community. NH4+ level played an essential role in the assembly processes than the other soil physicochemical properties and metal availability. High, moderate, and low levels of NH4+ could advocate stochastic process plus selection, heterogeneous selection to stochastic process, and heterogeneous selection, respectively. Network analysis highlighted a predominant role of NH4+ in regulating DNRA bacterial community assembly. However, the relative abundance of modules and some keystone species also were influenced by pH and EFe, respectively. Therefore, the DNRA bacterial community assembly under different heavy metal remediation treatments in this study was dominantly driven by nitrogen availability. pH, phosphorus, and metal availability were auxiliary regulators on DNRA bacterial community.


Subject(s)
Ammonium Compounds , Metals, Heavy , Microbiota , Ammonia/analysis , Bacteria , Calcium Carbonate , Denitrification , Metals, Heavy/analysis , Nitrates/analysis , Nitrogen/analysis , Nitrogen Oxides/analysis , Phosphorus , Soil
12.
IEEE J Electromagn RF Microw Med Biol ; 6(1): 103-110, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35434441

ABSTRACT

Objective: Needle electrical impedance myography (EIM) is a recently developed technique for neuromuscular evaluation. Despite its preliminary successful clinical application, further understanding is needed to aid interpreting EIM outcomes in nonhomogeneous skeletal muscle measurements. Methods: The framework presented models needle EIM measurements in a bidomain isotropic model. Finite element method (FEM) simulations verify the validity of our model predictions studying two cases: a spherical volume surrounded by tissue and a two-layered tissue. Results: Our models show that EIM is influenced by the vicinity of tissue with different electrical properties. The apparent resistance, reactance and phase relative errors between our theoretical predictions and FEM simulations in the spherical volume case study are ≤0.2%, ≤1.2% and ≤1.0%, respectively. For the two-layered tissue model case study, the relative errors are ≤2%. Conclusions: We propose a bio-physics driven analytical framework describing needle EIM measurements in a nonhomogeneous bidomain tissue model. Clinical impact: Our theoretical predictions may lead to new ways for interpreting needle EIM data in neuromuscular diseases that cause compositional changes in muscle content, e.g. connective tissue deposition within the muscle. These changes will manifest themselves by changing the electric properties of the conductor media and will impact impedance values.

13.
mSystems ; 7(2): e0122621, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35229647

ABSTRACT

Vibrio parahaemolyticus is a seafood-borne pathogen that poses a great threat to public health worldwide. It is found in either a planktonic cell or a biofilm form in the natural environment. The cps locus has been the only extensively studied polysaccharide biosynthesis gene cluster involved in biofilm formation for this bacterium. In this study, we found that an additional polysaccharide biosynthesis locus, scv, is also necessary for biofilm maturation. The scv locus is composed of two operons, and a loss of their expression leads to a defective biofilm phenotype. The transcription of the scv locus is under the control of a sigma 54-dependent response regulator, ScvE. In contrast, the quorum-sensing regulator AphA stimulates the expression of the cps locus and the scvABCD operon found in the scv locus. Bioinformatic analyses demonstrated that scv loci are divergent and widely distributed among 28 genera, including 26 belonging to the Gammaproteobacteria and 2 within the Alphaproteobacteria. We also determined that all scv locus-positive species are water-dwelling. Some strains of Aeromonas, Aliivibrio salmonicida, Pseudomonas anguilliseptica, Vibrio breoganii, and Vibrio scophthalmi probably acquired scv loci through insertion sequences and/or integrase-mediated horizontal gene transfer. Gene duplication and fusion were also detected in some scv homologs. Together, our results suggest that the genome of V. parahaemolyticus harbors two distinct polysaccharide biosynthesis loci, which may play a role in fine-tuning biofilm development, and that scv loci likely evolved by horizontal gene transfer, gene loss, gene duplication, and fragment fusion. IMPORTANCE Polysaccharides are the major component of biofilms, which provide survival advantages for bacteria in aquatic environments. The seafood-borne pathogen V. parahaemolyticus possesses a functionally uncharacterized polysaccharide biosynthesis locus, scv. We demonstrated that the scv locus is important for biofilm maturation and that scv expression is positively regulated by ScvE. Strains from 148 aquatic bacterial species possess scv homolog loci. These bacterial species belong to 28 genera, most of which belong to the Gammaproteobacteria class. The evolution and diversification of scv loci are likely driven by horizontal gene transfer, gene loss, gene duplication, and fragment fusion. Our results provide new insights into the function and evolution of this widespread polysaccharide biosynthesis locus.


Subject(s)
Gammaproteobacteria , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genetics , Biofilms , Quorum Sensing
14.
JID Innov ; 2(1): 100075, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35072140

ABSTRACT

Sensitive, objective, and easily applied methods for evaluating skin lesions are needed to improve diagnostic accuracy. In this study, we evaluated whether a developed noninvasive electrical impedance dermography device URSKIN could serve this purpose. In this pilot study, 17 subjects with subsequently confirmed basal cell carcinoma underwent four-electrode electrical impedance dermography measurements to assess the electrical properties of basal cell carcinoma and adjacent normal skin. A linear mixed-effects model with random intercept and slope terms was used for the analysis of multifrequency values in longitudinal and transverse directions. A significant difference in the intercept of frequency trajectories was observed for the longitudinal conductivity of 0.13 siemens/m (P < 0.001, 95% confidence interval = 0.10-0.16), transverse conductivity of 0.06 siemens/m (P < 0.001, 95% confidence interval = 0.05-0.07), longitudinal relative permittivity (dimensionless) of 203,742 (P < 0.001, 95% confidence interval = 180,292-227,191), and transverse relative permittivity (dimensionless) of 86,894 (P < 0.001, 95% confidence interval = 81,549 - 92,238). Thus, our device detected significant electrical differences between basal cell carcinoma and adjacent normal skin. Given these preliminary performance metrics and the ease of use, this technology merits further study to establish its value in facilitating the clinical diagnosis of skin cancers.

15.
Physiol Meas ; 42(11)2021 12 28.
Article in English | MEDLINE | ID: mdl-34763321

ABSTRACT

Objective.Needle electromyography (EMG) is used to study the electrical behavior of myofiber properties in patients with neuromuscular disorders. However, due to the complexity of electrical potential spatial propagation in nonhomogeneous diseased muscle, a comprehensive understanding of volume conduction effects remains elusive. Here, we develop a framework to study the conduction effect of extracellular abnormalities and electrode positioning on extracellular local field potential (LFP) recordings.Methods.The framework describes the macroscopic conduction of electrical potential in an isotropic, nonhomogeneous (i.e. two tissue) model. Numerical and finite element model simulations are provided to study the conduction effect in prototypical monopolar EMG measurements.Results.LFPs recorded are influenced in amplitude, phase and duration by the electrode position in regards to the vicinity of tissue with different electrical properties.Conclusion.The framework reveals the influence of multiple mechanisms affecting LFPs including changes in the distance between the source-electrode and tissue electrical properties.Clinical significance.Our modeled predictions may lead to new ways for interpreting volume conduction effects on recorded EMG activity, for example in neuromuscular diseases that cause structural and compositional changes in muscle tissue. These change will manifest itself by changing the electric properties of the conductor media and will impact recorded potentials in the area of affected tissue.


Subject(s)
Muscles , Needles , Action Potentials , Computer Simulation , Electrodes , Electromyography , Humans , Muscle, Skeletal
16.
mSystems ; 6(5): e0104021, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34636665

ABSTRACT

Soil microorganisms, which intricately link to ecosystem functions, are pivotal for the ecological restoration of heavy metal-contaminated soil. Despite the importance of rare and abundant microbial taxa in maintaining soil ecological function, the taxonomic and functional changes in rare and abundant communities during in situ chemical stabilization of cadmium (Cd)-contaminated soil and their contributions to the restoration of ecosystem functions remain elusive. Here, a 3-year field experiment was conducted to assess the effects of five soil amendments (CaCO3 as well as biochar and rice straw, individually or in combination with CaCO3) on rare and abundant microbial communities. The rare bacterial community exhibited a narrower niche breadth to soil pH and Cd speciation than the abundant community and was more sensitive to environmental changes altered by different soil amendments. However, soil amendments had comparable impacts on rare and abundant fungal communities. The assemblies of rare and abundant bacterial communities were dominated by variable selection and stochastic processes (dispersal limitation and undominated processes), respectively, while assemblies of both rare and abundant fungal communities were governed by dispersal limitation. Changes in soil pH, Cd speciation, and soil organic matter (SOM) by soil amendments may play essential roles in community assembly of rare bacterial taxa. Furthermore, the restored ecosystem multifunctionality by different amendments was closely related to the recovery of specific keystone species, especially rare bacterial taxa (Gemmatimonadaceae and Haliangiaceae) and rare fungal taxa (Ascomycota). Together, our results highlight the distinct responses of rare and abundant microbial taxa to soil amendments and their linkage with ecosystem multifunctionality. IMPORTANCE Understanding the ecological roles of rare and abundant species in the restoration of soil ecosystem functions is crucial to remediation of heavy metal-polluted soil. Our study assessed the efficiencies of five commonly used soil amendments on recovery of ecosystem multifunctionality and emphasized the relative contributions of rare and abundant microbial communities to ecosystem multifunctionality. We found great discrepancies in community composition, assembly, niche breadth, and environmental responses between rare and abundant communities during in situ chemical stabilization of Cd-contaminated soil. Application of different soil amendments triggered recovery of specific key microbial species, which were highly related to ecosystem multifunctionality. Together, our results highlighted the importance of rare bacterial as well as rare and abundant fungal communities underpinning restoration of soil ecosystem multifunctionality during the Cd stabilization process.

17.
Appl Environ Microbiol ; 87(21): e0136621, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34406835

ABSTRACT

Salinization is considered a major threat to soil fertility and agricultural productivity throughout the world. Soil microbes play a crucial role in maintaining ecosystem stability and function (e.g., nitrogen cycling). However, the response of bacterial community composition and community-level function to soil salinity remains uncertain. Here, we used multiple statistical analyses to assess the effect of high salinity on bacterial community composition and potential metabolism function in the agricultural ecosystem. Results showed that high salinity significantly altered both bacterial alpha (Shannon-Wiener index and phylogenetic diversity) and beta diversity. Salinity, total nitrogen (TN), and soil organic matter (SOM) were the vital environmental factors shaping bacterial community composition. The relative abundance of Actinobacteria, Chloroflexi, Acidobacteria, and Planctomycetes decreased with salinity, whereas Proteobacteria and Bacteroidetes increased with salinity. The modularity and the ratio of negative to positive links remarkedly decreased, indicating that high salinity destabilized bacterial networks. Variable selection, which belongs to deterministic processes, mediated bacterial community assembly within the saline soils. Function prediction results showed that the key nitrogen metabolism (e.g., ammonification, nitrogen fixation, nitrification, and denitrification processes) was inhibited in high salinity habitats. MiSeq sequencing of 16S rRNA genes revealed that the abundance and composition of the nitrifying community were influenced by high salinity. The consistency of function prediction and experimental verification demonstrated that high salinity inhibited soil bacterial community mediating nitrogen cycling. Our study provides strong evidence for a salinity effect on the bacterial community composition and key metabolism function, which could help us understand how soil microbes respond to ongoing environment perturbation. IMPORTANCE Revealing the response of the soil bacterial community to external environmental disturbances is an important but poorly understood topic in microbial ecology. In this study, we evaluated the effect of high salinity on the bacterial community composition and key biogeochemical processes in salinized agricultural soils (0.22 to 19.98 dS m-1). Our results showed that high salinity significantly decreased bacterial diversity, altered bacterial community composition, and destabilized the bacterial network. Moreover, variable selection (61% to 66%) mediated bacterial community assembly within the saline soils. Functional prediction combined with microbiological verification proved that high salinity inhibited soil bacterial community mediating nitrogen turnover. Understanding the impact of salinity on soil bacterial community is of great significance for managing saline soils and maintaining a healthy ecosystem.


Subject(s)
Nitrogen Cycle , Salinity , Soil Microbiology , Soil , Acidobacteria , Actinobacteria , Chloroflexi , Ecosystem , Nitrogen/metabolism , Phylogeny , Planctomycetes , RNA, Ribosomal, 16S/genetics , Soil/chemistry
18.
Physiol Meas ; 42(5)2021 06 17.
Article in English | MEDLINE | ID: mdl-33984840

ABSTRACT

Objective.Bioimpedance technology is experiencing an increased use to assess health in a wide range of new consumer, research and clinical applications. However, the interaction between tissues producing bioimpedance data is often unclear.Methods.This work provides a novel theoretical framework to model bioimpedance measurements of nonhomogeneous tissues. We consider five case studies to validate the usefulness of our approach against finite element model simulations.Results.Theoretical and FEM-simulated apparent resistance and reactance data were in good agreement, with a maximum relative errors <4% and <8%, respectively.Conclusion.The biophysics-driven framework developed provides compact analytical expressions to model nonhomogeneous bioimpedance measurements including multiple tissues with arbitrary shape and electrical properties. This work provides a new perspective to interpret nonhomogeneous bioimpedance measurements usingseries,parallel, andseries-parallelcircuit-like topology equivalents.Significance.Our framework is a new tool to better understand and describe complex nonhomogeneous biological measurements as, for example, cardiac, brain and respiratory applications using (non)invasive electrodes.


Subject(s)
Electric Impedance , Computer Simulation , Electrodes
19.
Physiol Meas ; 42(4)2021 05 13.
Article in English | MEDLINE | ID: mdl-33690188

ABSTRACT

Objective.Electrophysiological assessment of the tongue volume conduction properties (VCPs) using our novel multi-electrode user tongue array (UTA) depressor has the promise to serve as a biomarker in patients with bulbar dysfunction. However, whetherin vivodata collected using the UTA depressor accurately reflect the tongue VCPs remains unknown.Approach.To address this question, we performedin silicosimulations of the depressor with an accurate anatomical tongue finite element model (FEM) using healthy human tongue VCP values, namely the conductivity and the relative permittivity, in the sagittal plane (i.e. longitudinal direction) and axial and coronal planes (i.e. transverse directions). We then established the relationship between tongue VCP values simulated from our model to measured human data.Main results.Experimental versus simulated tongue VCP values including their spatial variation were in good agreement with differences well within the variability of the experimental results. Tongue FEM simulations corroborate the feasibility of our UTA depressor in assessing tongue VCPs.Significance.The UTA depressor is a new non-invasive and safe tool to measure tongue VCPs. These electrical properties reflect the tongue's ionic composition and cellular membrane integrity and could serve as a novel electrophysiological biomarker in neurological disorders affecting the tongue.


Subject(s)
Tongue , Electrodes , Heart Rate , Humans
20.
Sci Total Environ ; 772: 145472, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-33770900

ABSTRACT

Nitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification by oxidizing nitrite to nitrate, which is a key process in the biogeochemical nitrogen cycling. However, little is known about the co-occurrence patterns and assembly processes of NOB communities in agricultural soils with different salinities. Here, we explored the effects of salinity on Nitrobacter and Nitrospira community using high-throughput sequencing and multivariate statistical analyses. Our results showed that high salinity significantly inhibited the nitrite oxidation rates and decreased the abundance of Nitrobacter and Nitrospira. Extreme salty conditions significantly altered the diversity and composition of Nitrospira community but had little effect on Nitrobacter community. Nitrobacter network in high salinity soils was more closely connected while the connectivity of Nitrospira network became weak. Nitrobacter and Nitrospira community exhibited distinct assembly processes at different salinity levels. Stochastic processes were dominant in the Nitrobacter community assembly in both low and high salinity soils. Interestingly, the assembly of Nitrospira community was governed by stochastic and deterministic processes in low and high salinity soils, respectively. To our knowledge, our study provides the first description of the co-occurrence patterns and assembly processes of NOB communities in agricultural soils with different salinities. These results can help us understand the NOB ecological roles and improve the nitrite oxidation activity in a high salinity environment.


Subject(s)
Nitrites , Soil , Ammonia , Bacteria , Nitrification , Nitrites/analysis , Nitrobacter , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL