Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Front Neurosci ; 18: 1323190, 2024.
Article in English | MEDLINE | ID: mdl-38445257

ABSTRACT

Lack of situation awareness (SA) is the primary cause of human errors when operating forklifts, so determining the SA level of the forklift operator is crucial to the safety of forklift operations. An EEG recognition approach of forklift operator SA in actual settings was presented in order to address the issues with invasiveness, subjectivity, and intermittency of existing measuring methods. In this paper, we conducted a field experiment that mimicked a typical forklift operation scenario to verify the differences in EEG states of forklift operators with different SA levels and investigate the correlation of multi-band combination features of each brain region of forklift operators with SA. Based on the sensitive EEG combination indexes, Support Vector Mechanism was used to construct a forklift operator SA recognition model. The results revealed that there were differences between forklift operators with high and low SA in the θ, α, and ß frequency bands in zones F, C, P, and O; combined EEG indicators θ/ß, (α + θ)/(α + ß), and θ/(α + ß) in zones F, P, and C were significantly correlated with SA; the recognition accuracy of the model reached 88.64% in the case of combined EEG indicators of zones C & F & P as input. It could provide a reference for SA measurement, contributing to the improvement of SA.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 269: 120789, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34968834

ABSTRACT

As a colorless, highly toxic and widely used chemical reagent, phosgene poses a potentially serious threat to public health and environmental safety. Therefore, there is an urgent need to develop a simple and sensitive method for detecting phosgene. In this work, a ratiometric fluorescent probe (NED) for phosgene was developed by utilizing 4-substituted 1,8-naphthimide unit as the fluorophore and ethylenediamine as the recognition moiety. The probe NED undergoes intramolecular cyclization reaction with phosgene, resulting in a remarkable ratiometric fluorescence response. The probe NED displays high sensitivity (LOD = 4.9 nM), excellent ratiometric fluorescence signal, and high selectivity toward phosgene over other relevant analytes. In addition, paper test strip capable of visually detecting gaseous phosgene has also been fabricated.


Subject(s)
Phosgene , Cyclization , Fluorescent Dyes , Gases , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL