Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Exp Biol ; 226(19)2023 10 01.
Article in English | MEDLINE | ID: mdl-37577985

ABSTRACT

Understanding neural function requires quantification of the sensory signals that an animal's brain evolved to interpret. These signals in turn depend on the morphology and mechanics of the animal's sensory structures. Although the house mouse (Mus musculus) is one of the most common model species used in neuroscience, the spatial arrangement of its facial sensors has not yet been quantified. To address this gap, the present study quantifies the facial morphology of the mouse, with a particular focus on the geometry of its vibrissae (whiskers). The study develops equations that establish relationships between the three-dimensional (3D) locations of whisker basepoints, whisker geometry (arclength, curvature) and the 3D angles at which the whiskers emerge from the face. Additionally, the positions of facial sensory organs are quantified relative to bregma-lambda. Comparisons with the Norway rat (Rattus norvegicus) indicate that when normalized for head size, the whiskers of these two species have similar spacing density. The rostral-caudal distances between facial landmarks of the rat are a factor of ∼2.0 greater than the mouse, while the scale of bilateral distances is larger and more variable. We interpret these data to suggest that the larger size of rats compared with mice is a derived (apomorphic) trait. As rodents are increasingly important models in behavioral neuroscience, the morphological model developed here will help researchers generate naturalistic, multimodal patterns of stimulation for neurophysiological experiments and allow the generation of synthetic datasets and simulations to close the loop between brain, body and environment.


Subject(s)
Brain , Vibrissae , Rats , Mice , Animals , Vibrissae/physiology , Touch/physiology
2.
PLoS One ; 18(1): e0269210, 2023.
Article in English | MEDLINE | ID: mdl-36607960

ABSTRACT

Facial vibrissae (whiskers) are thin, tapered, flexible, hair-like structures that are an important source of tactile sensory information for many species of mammals. In contrast to insect antennae, whiskers have no sensors along their lengths. Instead, when a whisker touches an object, the resulting deformation is transmitted to mechanoreceptors in a follicle at the whisker base. Previous work has shown that the mechanical signals transmitted along the whisker will depend strongly on the whisker's geometric parameters, specifically on its taper (how diameter varies with arc length) and on the way in which the whisker curves, often called "intrinsic curvature." Although previous studies have largely agreed on how to define taper, multiple methods have been used to quantify intrinsic curvature. The present work compares and contrasts different mathematical approaches towards quantifying this important parameter. We begin by reviewing and clarifying the definition of "intrinsic curvature," and then show results of fitting whisker shapes with several different functions, including polynomial, fractional exponent, elliptical, and Cesàro. Comparisons are performed across ten species of whiskered animals, ranging from rodents to pinnipeds. We conclude with a discussion of the advantages and disadvantages of using the various models for different modeling situations. The fractional exponent model offers an approach towards developing a species-specific parameter to characterize whisker shapes within a species. Constructing models of how the whisker curves is important for the creation of mechanical models of tactile sensory acquisition behaviors, for studies of comparative evolution, morphology, and anatomy, and for designing artificial systems that can begin to emulate the whisker-based tactile sensing of animals.


Subject(s)
Caniformia , Touch Perception , Animals , Vibrissae/physiology , Mammals/anatomy & histology , Touch/physiology
3.
J Hazard Mater ; 445: 130500, 2023 03 05.
Article in English | MEDLINE | ID: mdl-36469991

ABSTRACT

Microplastics can profoundly alter nitrogen cycling. However, it remains poorly understood how microplastics impact soil nitrogen processes and generate N2O. A meta-analysis was conducted for this investigation based on 60 published studies to elucidate the effects of microplastics on soil nitrogen cycling, from genes to processes. Under microplastic exposure, the emissions of soil N2O was significantly increased (140.6%), while the nitrate reductase activities increased by 4.8%. The denitrification rate and number of denitrifier genes were increased by 17.8% and 10.6%, respectively. Meanwhile, the nitrification rate and nitrifier genes were not significantly altered, so did the nitrogen immobilization and mineralization rates. The additional emission of soil N2O might primarily from stimulated denitrification. Soil N2O emission and denitrification genes were always increased, regardless of the concentrations of microplastic or experiment duration. As a result, the nitrite was increased by 38.8% and nitrate was decreased by 22.4%, respectively. Interestingly, the N2O emission increments and copy number of denitrifiers genes diminished over time. This study revealed divergent changes in soil nitrogen processes and highlighted N2O emissions with a greater denitrification rate under microplastic exposure. The negative impacts of microplastics on soil health were revealed from the perspective of soil nitrogen availability and N2O emissions.


Subject(s)
Denitrification , Nitrous Oxide , Microplastics , Plastics , Nitrification , Soil , Nitrogen/analysis , Soil Microbiology
4.
Sci Total Environ ; 847: 157449, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35863564

ABSTRACT

Nature reserves (NRs) are designated as a result of the ecosystem, species, economy, population, and land use coordination. However, the extent to which these factors influence the geographical pattern of NRs is unclear. Here, 11 indices (seven natural and four anthropogenic) were examined to identify these relationships in over 2600 terrestrial NRs in mainland China at the provincial level. Correlation analysis between natural and anthropogenic factors and NRs showed that desert and grassland had a positive correlation with NR coverage and area, and a negative correlation with NR density. This result was reversed in the correlation analysis between forest wetland coverage, endangered species, wildlife and NR coverage, area, and density. Similar results were found in the correlation analysis of all anthropogenic factors (population density, agricultural land, roads, and per capita GDP) with the coverage, area, and density of NRs. Canonical correspondence analysis (CCA) showed that three significant natural indicators (desert ecosystems, grasslands ecosystems, and forested and wetlands ecosystems) could explain 64.2 % of the pattern of NRs. The largest contributor was desert coverage, explaining 48.3 % (P = 0.002) of all indicators, followed by grassland coverage, explaining 8.6 % (P = 0.012), and forest and wetland coverage, explaining 7.3 % (P = 0.008). Human activities were significantly positively correlated with forest and wetland coverage, flora, and fauna, and negatively correlated with desert and grassland coverage. Compared with sand and grassland in the western region, the forest wetlands and wildlife in the eastern and central provinces were under greater pressure from anthropogenic activities. Therefore, natural factors determine the general layout of NRs, while the influence of anthropogenic activities makes the distribution of NRs patchy. When establishing national parks, governments must design strategies to coordinate areas with high biodiversity and high levels of human activity.


Subject(s)
Conservation of Natural Resources , Ecosystem , Animals , Animals, Wild , Anthropogenic Effects , Biodiversity , China , Conservation of Natural Resources/methods , Grassland , Humans , Sand
5.
Environ Pollut ; 306: 119424, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35537554

ABSTRACT

Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (Max-DOAS) measurements of nitrogen dioxide (NO2) were continuously obtained from January to November 2019 in northeastern China (NEC). Seasonal variations in the mean NO2 vertical column densities (VCDs) were apparent, with a maximum of 2.9 × 1016 molecules cm-2 in the winter due to enhanced NO2 emissions from coal-fired winter heating, a longer photochemical lifetime and atmospheric transport. Daily maximum and minimum NO2 VCDs were observed, independent of the season, at around 11:00 and 13:00 local time, respectively, and the most obvious increases and decreases occurred in the winter and autumn, respectively. The mean diurnal NO2 VCDs at 11:00 increased to at 08:00 by 1.6, 5.8, and 6.7 × 1015 molecules cm-2 in the summer, autumn and winter, respectively, due to increased NO2 emissions, and then decreased by 2.8, 4.2, and 5.1 × 1015 molecules cm-2 at 13:00 in the spring, summer, and autumn, respectively. This was due to strong solar radiation and increased planetary boundary layer height. There was no obvious weekend effect, and the NO2 VCDs only decreased by about 10% on the weekends. We evaluated the contributions of emissions and transport in the different seasons to the NO2 VCDs using a generalized additive model, where the contributions of local emissions to the total in the spring, summer, autumn, and winter were 89 ± 12%, 92 ± 11%, 86 ± 12%, and 72 ± 16%, respectively. The contribution of regional transport reached 26% in the winter, and this high contribution value was mainly correlated with the northeast wind, which was due to the transport channel of air pollutants along the Changbai Mountains in NEC. The NO2/SO2 ratio was used to identify NO2 from industrial sources and vehicle exhaust. The contribution of industrial NO2 VCD sources was >66.3 ± 16% in Shenyang due to the large amount of coal combustion from heavy industrial activity, which emitted large amounts of NO2. Our results suggest that air quality management in Shenyang should consider reductions in local NO2 emissions from industrial sources along with regional cooperative control.


Subject(s)
Air Pollutants , Nitrogen Dioxide , Air Pollutants/analysis , China , Coal/analysis , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Seasons
6.
Environ Int ; 160: 107048, 2022 02.
Article in English | MEDLINE | ID: mdl-34959197

ABSTRACT

In this study, tropospheric formaldehyde (HCHO) vertical column densities (VCDs) were measured using multi-axis differential optical absorption spectroscopy (MAX-DOAS) from January to November 2019 in Shenyang, Northeast China. The maximum HCHO VCD value appeared in the summer (1.74 × 1016 molec/cm2), due to increased photo-oxidation of volatile organic compounds (VOCs). HCHO concentrations increased from 08:00 and peaked near 13:00, which was mainly attributed to the increased release of isoprene from plants and enhanced photolysis at noon. The HCHO VCDs observed by MAX-DOAS and OMI have a good correlation coefficient (R) of 0.78, and the contributions from primary and secondary HCHO sources were distinguished by the multi-linear regression model. The anthropogenic emissions showed unobvious seasonal variations, and the primary HCHO was relatively stable in Shenyang. Secondary HCHO contributed 82.62%, 83.90%, 78.90%, and 41.53% to the total measured ambient HCHO during the winter, spring, summer, and autumn, respectively. We also found a good correlation (R = 0.78) between enhanced vegetation index (EVI) and HCHO VCDs, indicating that the oxidation of biogenic volatile organic compounds (BVOCs) was the main source of HCHO. The ratio of secondary HCHO to nitrogen dioxide (NO2) was used as the tracer to analyze O3-NOx-VOC sensitivities. We found that the VOC-limited, VOC-NOx-limited, and NOx-limited regimes made up 93.67%, 6.23%, 0.11% of the overall measurements, respectively. In addition, summertime ozone (O3) sensitivity changed from VOC-limited in the morning to VOC-NOx-limited in the afternoon. Therefore, this study offers information on HCHO sources and corresponding O3 production sensitivities to support strategic management decisions.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , China , Environmental Monitoring/methods , Nitrogen Dioxide/analysis , Ozone/analysis , Spectrum Analysis , Volatile Organic Compounds/analysis
7.
Molecules ; 26(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34500694

ABSTRACT

Nitrogen-rich porous networks with additional polarity and basicity may serve as effective adsorbents for the Lewis electron pairing of iodine molecules. Herein a carbazole-functionalized porous aromatic framework (PAF) was synthesized through a Sonogashira-Hagihara cross-coupling polymerization of 1,3,5-triethynylbenzene and 2,7-dibromocarbazole building monomers. The resulting solid with a high nitrogen content incorporated the Lewis electron pairing effect into a π-conjugated nano-cavity, leading to an ultrahigh binding capability for iodine molecules. The iodine uptake per specific surface area was ~8 mg m-2 which achieved the highest level among all reported I2 adsorbents, surpassing that of the pure biphenyl-based PAF sample by ca. 30 times. Our study illustrated a new possibility for introducing electron-rich building units into the design and synthesis of porous adsorbents for effective capture and removal of volatile iodine from nuclear waste and leakage.

8.
J Neurosci Methods ; 360: 109255, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34139267

ABSTRACT

BACKGROUND: An increasing number of rodent model systems use injection of DNA or viral constructs in the neonatal brain. However, approaches for reliable positioning and stereotaxic injection at this developmental stage are limited, typically relying on handheld positioning or molds that must be re-aligned for use in a given laboratory. NEW METHOD: A complete protocol and open-source software pipeline for generating 3D-printed head molds derived from a CT scan of a neonatal mouse head cast, together with a universal adapter that can be placed on a standard stereotaxic stage. RESULTS: A series of test injections with adenovirus encoding red fluorescent protein, or Fluorogold, were conducted using original clay molds and newly generated 3D printed molds. Several metrics were used to compare spread and localization of targeted injections. COMPARISON WITH EXISTING METHODS: The new method of head mold generation gave comparable results to the field standard, but also allowed the rapid generation of additional copies of each head mold with standardized positioning of the head each time. CONCLUSIONS: This 3D printing pipeline can be used to efficiently develop a series of head molds with standardized injection coordinates across multiple laboratories. More broadly, this pipeline can easily be adapted to other perinatal ages or species.


Subject(s)
Imaging, Three-Dimensional , Printing, Three-Dimensional , Animals , Animals, Newborn , Brain/diagnostic imaging , Mice , Tomography, X-Ray Computed
9.
PLoS Comput Biol ; 17(4): e1007887, 2021 04.
Article in English | MEDLINE | ID: mdl-33793548

ABSTRACT

Nearly all mammals have a vibrissal system specialized for tactile sensation, composed of whiskers growing from sensor-rich follicles in the skin. When a whisker deflects against an object, it deforms within the follicle and exerts forces on the mechanoreceptors inside. In addition, during active whisking behavior, muscle contractions around the follicle and increases in blood pressure in the ring sinus will affect the whisker deformation profile. To date, however, it is not yet possible to experimentally measure how the whisker deforms in an intact follicle or its effects on different groups of mechanoreceptors. The present study develops a novel model to predict vibrissal deformation within the follicle sinus complex. The model is based on experimental results from a previous ex vivo study on whisker deformation within the follicle, and on a new histological analysis of follicle tissue. It is then used to simulate whisker deformation within the follicle during passive touch and active whisking. Results suggest that the most likely whisker deformation profile is "S-shaped," crossing the midline of the follicle right below the ring sinus. Simulations of active whisking indicate that an increase in overall muscle stiffness, an increase in the ratio between deep and superficial intrinsic muscle stiffness, and an increase in sinus blood pressure will all enhance tactile sensitivity. Finally, we discuss how the deformation profiles might map to the responses of primary afferents of each mechanoreceptor type. The mechanical model presented in this study is an important first step in simulating mechanical interactions within whisker follicles.


Subject(s)
Hair Follicle/physiology , Vibrissae/physiology , Animals , Female , Hair Follicle/anatomy & histology , Mechanoreceptors/physiology , Physical Stimulation , Rats , Rats, Long-Evans , Touch Perception/physiology
10.
Huan Jing Ke Xue ; 38(10): 4151-4159, 2017 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-29965198

ABSTRACT

As one of the drinking water sources for Guiyang City in southwest China, the Aha Reservoir has an area of 190 km2 and a volume of 5.42×108 m3. The water depth is less than 30 m, with an average depth of 13 m. Regulated by subtropical humid monsoon climate, it has cool summers and warm winters, with an annual mean air temperature of about 15.3℃ and an annual normal rainfall of approximately 1,129 mm. Impacted heavily by human activity (e.g., untreated industrial and domestic sewage and agricultural non-point pollution sources), the eutrophication problem in the Aha Reservoir has become more serious each year. In order to explore the spatial and temporal distribution characteristics of chlorophyll a (Chl-a) and its relationship to algae and the driving factors in the Aha Reservoir, phytoplankton and water samples were collected in the dry period, normal period, and flood period. The results showed a significant seasonal variation in Chl-a, same as biomass, but not the same as the algal abundance. Highest Chl-a concentration (91 µg·L-1) occurred in the mean season with the dinoflagellate bloom but during dry and wet seasons, they were only 8 µg·L-1 and 16 µg·L-1, respectively. During the dry and flood periods, the Chl-a concentrations in surface waters were slightly higher than the other layers caused by sufficient light and dissolved oxygen. But in the normal period, the Chl-a concentrations in surface waters were far higher than the other layers because of the dinoflagellate bloom assembling in surface waters. Located at the reservoir entrance of Jinzhong River, Dam sampling point owned higher Chl-a concentration than Kuzhong as a result of higher nutrients. Correlation analysis indicated that Dinoflagellate was positively correlated with Chl-a (R=0.798, P<0.01). Chl-a was positively associated with total phosphorus, dissolved oxygen, pH value, and total nitrogen (R=0.762, P<0.01; R=0.792, P<0.01; R=0.658, P<0.01; R=0.388, P<0.05) and it had a negative correlation with the N/P ratio and nitrate nitrogen (R=-0.37, P<0.05; R=-0.435, P<0.05). Stepwise regression analysis showed that TP, N/P ratio, and DO were the most important factors influencing the temporal and spatial distribution of Chl-a. Thermal stratification and water temperature were also the significant factors that could not be ignored.


Subject(s)
Chlorophyll A/analysis , Drinking Water/chemistry , Environmental Monitoring , Eutrophication , China , Dinoflagellida , Nitrogen/analysis , Oxygen/analysis , Phosphorus/analysis , Phytoplankton , Seasons , Spatio-Temporal Analysis
11.
Proc SPIE Int Soc Opt Eng ; 97842016 Feb 27.
Article in English | MEDLINE | ID: mdl-27127330

ABSTRACT

Pathologies of the optic nerve and orbit impact millions of Americans and quantitative assessment of the orbital structures on 3-D imaging would provide objective markers to enhance diagnostic accuracy, improve timely intervention and eventually preserve visual function. Recent studies have shown that the multi-atlas methodology is suitable for identifying orbital structures, but challenges arise in the identification of the individual extraocular rectus muscles that control eye movement. This is increasingly problematic in diseased eyes, where these muscles often appear to fuse at the back of the orbit (at the resolution of clinical computed tomography imaging) due to inflammation or crowding. We propose the use of Kalman filters to track the muscles in three-dimensions to refine multi-atlas segmentation and resolve ambiguity due to imaging resolution, noise, and artifacts. The purpose of our study is to investigate a method of automatically generating orbital metrics from CT imaging and demonstrate the utility of the approach by correlating structural metrics of the eye orbit with clinical data and visual function measures in subjects with thyroid eye disease. The pilot study demonstrates that automatically calculated orbital metrics are strongly correlated with several clinical characteristics. Moreover, the superior, inferior, medial and lateral rectus muscles obtained using Kalman filters are each correlated with different categories of functional deficit. These findings serve as foundation for further investigation in the use of CT imaging in the study, analysis and diagnosis of ocular diseases, specifically thyroid eye disease.

12.
Mol Biosyst ; 11(9): 2511-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26166390

ABSTRACT

Genome-wide RNA interference screens have greatly facilitated the identification of essential host factors (EHFs) for viral infections, whose knockdown effects significantly influence virus replication but not host cell viability. However, little has been done to link EHFs with another important host factor type, i.e., virus targeting proteins (VTPs) that viruses directly interact with for intracellular survival, hampering the integrative understanding of virus-host interactions. Using EHFs and VTPs for human immunodeficiency virus type 1 (HIV-1) and influenza A virus (IAV) infections, we found in general that despite limited overlap, EHFs and VTPs are both among the most differentially dysregulated genes in host transcriptional response to HIV and IAV infections, and notably they show consistency in regulation orientation. In the human protein-protein interaction network, both EHFs and VTPs hold topologically important positions at the global center, and importantly their direct interactions are statistically significant. We also identified BRCA1 and TP53 (or SMAD3 and PIK3R1) being the most extensive VTP-interacting EHFs (or EHF-interacting VTPs) for HIV-1 and IAV, which hold great potential in deciphering specific infection features and discovery of host directed antivirals. Further, most EHFs are the upstream regulators of VTPs when mapped in the same signaling pathways, some of which present intensive cross links. Collectively, these results provide insights into functional associations of the identified host gene factors for viral infections and highlight the regulatory significance of EHFs, and the necessity of their selective exploitation in confrontation to viral infections.


Subject(s)
Gene Expression Regulation , Host-Pathogen Interactions , RNA Interference , Viral Proteins/metabolism , Virus Diseases/genetics , Virus Diseases/metabolism , Cluster Analysis , Gene Expression Profiling , HIV-1/physiology , Host-Pathogen Interactions/genetics , Humans , Influenza A virus/physiology , Protein Binding , Protein Interaction Mapping , Protein Interaction Maps , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL