Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Am J Infect Control ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964659

ABSTRACT

BACKGROUND: Dental outpatient departments, characterized by close proximity and unmasked patients, present a considerable risk of respiratory infections for health care workers (HCWs). However, the lack of comprehensive data on close contact (<1.5m) between HCWs and patients poses a significant obstacle to the development of targeted control strategies. METHODS: An observation study was conducted at a hospital in Shenzhen, China, utilizing depth cameras with machine learning to capture close-contact behaviors of patients with HCWs. Additionally, questionnaires were administered to collect patient demographics. RESULTS: The study included 200 patients, 10 dental practitioners, and 10 nurses. Patients had significantly higher close-contact rates with dental practitioners (97.5%) compared with nurses (72.8%, P < .001). The reason for the visit significantly influenced patient-practitioner (P = .018) and patient-nurse (P = .007) close-contact time, with the highest values observed in prosthodontics and orthodontics patients. Furthermore, patient age also significantly impacted the close-contact rate with nurses (P = .024), with the highest rate observed in patients below 14 years old at 85% [interquartile range: 70-93]. CONCLUSIONS: Dental outpatient departments exhibit high HCW-patient close-contact rates, influenced by visit purpose and patient age. Enhanced infection control measures are warranted, particularly for prosthodontics and orthodontics patients or those below 14 years old.

2.
Small ; : e2400549, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726954

ABSTRACT

A large optical anisotropy is the most important parameter of birefringent crystals. Integrating π-conjugated groups with large polarizable anisotropy into target compounds is a common strategy for constructing brilliant birefringent crystals. However, the key problem is to enhance the density of the birefringence-active units and further arrange them parallelly. In this study, three novel birefringent crystals, C9H7NBrX (X = Cl, Br, NO3), are successfully synthesized by introducing a new birefringence-active [C9H7NBr]+ unit. Interestingly, these compounds feature similar layered structures but exhibit different optical anisotropies at 550 nm (0.277 for C9H7NBrCl, 0.328 for C9H7NBrBr, and 0.401 for C9H7NBrNO3) owing to the different anions in them. Particularly, the small trigonal planar NO3 anions perfectly fill the interstices of the π-conjugated [C9H7NBr]+ groups with large optical anisotropy, with the resulting compound C9H7NBrNO3 showing superior optical properties compared to the others. The above findings provide strategies for designing new optical materials with large birefringence by matching birefringence-active groups of different sizes. Additionally, a new theory for predicting and comparing the polarizability anisotropy of compounds is proposed, which would guide in exploring large birefringent crystals.

3.
Heliyon ; 10(5): e27156, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38463820

ABSTRACT

The rate of vincristine (VCR) resistance in the treatment of retinoblastoma (RB) is relatively high, and the exact role and mechanism of autophagy and fatty acid (FA) metabolism in RB are still unknown. The aim of this study was to elucidate the molecular mechanism by which acyl-CoA thioesterase 7 (ACOT7) regulates FA metabolism and autophagy, which may lead to potential therapeutic strategies for RB. In the present study, the relationship between FA metabolism and cellular drug sensitivity was evaluated through ACOT7 overexpression or inhibition tests in RB-resistant cells. The lipase inhibitor orlistat and the autophagy inhibitor CQ were used to determine the effects of ACOT7 on FA metabolism, autophagy, and cellular drug sensitivity, as well as the therapeutic value of ACOT7 targeting. The results showed that ACOT7 was upregulated in VCR-resistant RB cells, significantly enhancing cell resistance and indicating that ACOT7 may serve as a biomarker for VCR resistance in RB cells. Knockdown of ACOT7 inhibited FA metabolism and reduced cell viability in VCR-resistant RB cells. The effect of ACOT7 overexpression was opposite to that of ACOT7 knockdown, and ACOT7 overexpression promoted autophagy in VCR-resistant RB cells. After treatment with orlistat or CQ, FA metabolism in VCR-resistant RB cells decreased, cell viability and autophagy were inhibited, EMT was inhibited, and the sensitivity of RB cells to VCR was increased. In conclusion, ACOT7 knockdown can mediate FA metabolism to inhibit autophagy and the migration of RB cells, thereby improving the sensitivity of RB cells to VCR.

4.
Environ Res ; 251(Pt 1): 118656, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38460664

ABSTRACT

To study the distribution of trace elements in natural water of the Du River Source National Nature Reserve and to assess the water quality and health risks, Zhushan County in Hubei Province was selected as the study area. Element content in 361 natural water samples collected from Zhushan County were measured by ICP-MS, ICP-OES, and HG-AFS. The main anions and cations present in water samples from Zhushan County are Ca2+ and HCO3-. The water chemistry is predominantly influenced by the weathering of carbonate rocks. The water samples with high content of selenium (Se) (0∼82.9 µg/L, mean 4.6 µg/L) in natural water in Zhushan County are mainly distributed in the northern part of Zhushan. The strontium (Sr) content of 49.6% of the water samples (0.001-2.177 mg/L, mean 0.234 mg/L) reached the criteria of natural mineral water for drinking in China (Sr ≥ 0.2 mg/L), which is distributed throughout the county. The high content of metasilicic acid (H2SiO3) (0.026-35.910 mg/L, mean 12.598 mg/L) and zinc (Zn) (0∼407.218 µg/L, mean 12.406 µg/L) are concentrated in northern Zhushan County. 99.7% water samples were freshwater and 98.9% meet the criteria of "good" water quality. All of the natural water samples have low health risk and low heavy metal pollution. 6.1% water samples meet the criteria of Se-type mineral water, while 45.4% meet the criteria of Sr-type mineral water, and 4.4% water samples meet the criteria of "low sodium, high Se, and high Sr" mineral water. Zhushan County has the potential for Se-type mineral water and Sr-type mineral water development. The findings of this study hold immense significance for the public health implications of drinking water in Du River Source, thereby offering valuable insights for effective water resources management.


Subject(s)
Environmental Monitoring , Rivers , Water Pollutants, Chemical , China , Rivers/chemistry , Risk Assessment , Water Pollutants, Chemical/analysis , Humans , Water Quality
5.
Heliyon ; 10(4): e26600, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38404764

ABSTRACT

Newly established enterprises in China face significant challenges and opportunities, with persistently high mortality rates. Navigating market challenges and establishing sustainable competitive advantages are pressing issues for contemporary businesses. This study delves into the bridging role of business model innovation between entrepreneurial bricolage and entrepreneurial performance, with market orientation influencing the relationship boundaries. We examined 288 Chinese small and medium-sized enterprises, investigating the relationships among entrepreneurial bricolage, business model innovation, market orientation, and entrepreneurial performance. Empirical results indicate: (1) Entrepreneurial bricolage positively influences business model innovation, and business model innovation positively impacts entrepreneurial performance. (2) Business model innovation plays a fully mediating positive role between entrepreneurial bricolage and entrepreneurial performance. (3) Market orientation positively moderates the impact of entrepreneurial bricolage on business model innovation and entrepreneurial performance, and it also positively moderates the impact of business model innovation on entrepreneurial performance. (4) Market orientation positively moderates the impact of entrepreneurial bricolage, mediated by business model innovation, on entrepreneurial performance. The study results contribute to a more effective understanding of the mechanisms through which entrepreneurial bricolage and business model innovation influence entrepreneurial performance, as well as how market orientation moderates their relationships and how enterprises sustain competitive advantages.

6.
Redox Biol ; 67: 102930, 2023 11.
Article in English | MEDLINE | ID: mdl-37847980

ABSTRACT

Benzo[α]pyrene (Bap) is recognized as a ubiquitous environmental pollutant among the polycyclic aromatic hydrocarbons (PAHs) class. Previous studies have shown that the hepatotoxicity of Bap is mainly caused by its metabolites, although it remains unclear whether Bap itself induces such damage. This study integrated metabolomics and chemical proteomics approaches to comprehensively identify the potential target proteins affected by Bap in liver cells. The results from the metabolomics showed that the significant changed metabolites were related with cellular redox homeostasis. CEllular Thermal Shift Assay (CETSA) showed that Bap induced protein thermal displacement of superoxide dismutase 3 (SOD3) and glutathione peroxidase 4 (GPX4), which are closely related to oxidative homeostasis. Further validation through in vitro CETSA and drug affinity response target stability (DARTS) revealed that Bap directly affected the stability of SOD3 and GPX4 proteins. The binding affinities of Bap to the potential target proteins were further evaluated using molecular docking, while the isothermal titration calorimetry (ITC) interaction measurements indicated nanomolar-level Kd values. Importantly, we found that Bap weakened the antioxidant capacity by destroying the activities of SOD3 and GPX4, which provided a new understanding of the mechanism of hepatotoxicity induced by Bap. Moreover, our provided workflow integrating metabolomics and label-free chemical proteomics, can be regarded as a practical way to identify the targets and inter-mechanisms for the various environmental compounds.


Subject(s)
Benzo(a)pyrene , Chemical and Drug Induced Liver Injury , Humans , Benzo(a)pyrene/toxicity , Proteomics/methods , Molecular Docking Simulation , Superoxide Dismutase , Proteins , Chemical and Drug Induced Liver Injury/etiology
7.
Cell Stem Cell ; 30(8): 1110-1123.e9, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541214

ABSTRACT

Mechanical forces are known to be important in mammalian blastocyst formation; however, due to limited tools, specific force inputs and how they relay to first cell fate control of inner cell mass (ICM) and/or trophectoderm (TE) remain elusive. Combining in toto live imaging and various perturbation experiments, we demonstrate and measure fluid flow forces existing in the mouse blastocyst cavity and identify Klf2(Krüppel-like factor 2) as a fluid force reporter with force-responsive enhancers. Long-term live imaging and lineage reconstructions reveal that blastomeres subject to higher fluid flow forces adopt ICM cell fates. These are reinforced by internal ferrofluid-induced flow force assays. We also utilize ex vivo fluid flow force mimicking and pharmacological perturbations to confirm mechanosensing specificity. Together, we report a genetically encoded reporter for continuously monitoring fluid flow forces and cell fate decisions and provide a live imaging framework to infer force information enriched lineage landscape during development. VIDEO ABSTRACT.


Subject(s)
Blastocyst , Transcription Factors , Mice , Animals , Cell Differentiation , Transcription Factors/genetics , Embryonic Development , Cell Lineage , Mammals
8.
Front Neurosci ; 17: 1170355, 2023.
Article in English | MEDLINE | ID: mdl-37440917

ABSTRACT

In mammals, early organogenesis begins soon after gastrulation, accompanied by specification of various type of progenitor/precusor cells. In order to reveal dynamic chromatin landscape of precursor cells and decipher the underlying molecular mechanism driving early mouse organogenesis, we performed single-cell ATAC-seq of E8.5-E10.5 mouse embryos. We profiled a total of 101,599 single cells and identified 41 specific cell types at these stages. Besides, by performing integrated analysis of scATAC-seq and public scRNA-seq data, we identified the critical cis-regulatory elements and key transcription factors which drving development of spinal cord and somitogenesis. Furthermore, we intersected accessible peaks with human diseases/traits-related loci and found potential clinical associated single nucleotide variants (SNPs). Overall, our work provides a fundamental source for understanding cell fate determination and revealing the underlying mechanism during postimplantation embryonic development, and expand our knowledge of pathology for human developmental malformations.

9.
Epidemiol Infect ; 151: e111, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37350245

ABSTRACT

The aim of this study is to evaluate the infection risk of aircraft passengers seated within and beyond two rows of the index case(s) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), influenza A(H1N1)pdm09 virus, and SARS-CoV-1. PubMed databases were searched for articles containing information on air travel-related transmission of SARS-CoV-2, influenza A(H1N1)pdm09 virus, and SARS-CoV-1 infections. We performed a meta-analysis of inflight infection data. In the eight flights where the attack rate could be calculated, the inflight SARS-CoV-2 attack rates ranged from 2.6% to 16.1%. The risk ratios of infection for passengers seated within and outside the two rows of the index cases were 5.64 (95% confidence interval (CI):1.94-16.40) in SARS-CoV-2 outbreaks, 4.26 (95% CI:1.08-16.81) in the influenza A(H1N1)pdm09 virus outbreaks, and 1.91 (95% CI:0.80-4.55) in SARS-CoV-1 outbreaks. Furthermore, we found no significant difference between the attack rates of SARS-CoV-2 in flights where the passengers were wearing masks and those where they were not (p = 0.22). The spatial distribution of inflight SARS-CoV-2 outbreaks was more similar to that of the influenza A(H1N1)pdm09 virus outbreaks than to that of SARS-CoV-1. Given the high proportion of asymptomatic or pre-symptomatic infection in SARS-CoV-2 transmission, we hypothesised that the proximity transmission, especially short-range airborne route, might play an important role in the inflight SARS-CoV-2 transmission.


Subject(s)
Air Travel , COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Humans , SARS-CoV-2 , COVID-19/epidemiology , Travel-Related Illness
10.
Vaccine ; 41(32): 4700-4709, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37353454

ABSTRACT

Pseudomonas aeruginosa (P. aeruginosa) is one of the most prevalent pathogens of bacterial keratitis. Bacterial keratitis is a major cause of blindness worldwide. The rising incidence of multidrug resistance of P. aeruginosa precludes treatment with conventional antibiotics. Herein, we evaluated the protective efficiency and explored the possible underlying mechanism of an X-ray inactivated vaccine (XPa) using a murine P. aeruginosa keratitis model. Mice immunized with XPa exhibit reduced corneal bacterial loads and pathology scores. XPa vaccination induced corneal macrophage polarization toward M2, averting an excessive inflammatory reaction. Furthermore, histological observations indicated that XPa vaccination suppressed corneal fibroblast activation and prevented irreversible visual impairment. The potency of XPa against keratitis highlights its potential utility as an effective and promising vaccine candidate for P. aeruginosa.


Subject(s)
Eye Infections, Bacterial , Keratitis , Pseudomonas Infections , Animals , Mice , Pseudomonas aeruginosa , X-Rays , Vaccines, Inactivated/therapeutic use , Keratitis/prevention & control , Keratitis/drug therapy , Keratitis/microbiology , Cornea/microbiology , Cornea/pathology , Eye Infections, Bacterial/microbiology , Eye Infections, Bacterial/pathology , Eye Infections, Bacterial/prevention & control , Pseudomonas Infections/prevention & control , Mice, Inbred C57BL
11.
J Ethnopharmacol ; 317: 116695, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37315651

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The present study aims to evaluate the efficacy of Venenum Bufonis (VBF), a traditional Chinese medicine derived from the dried secretions of the Chinese toad, in treating colorectal cancer (CRC). The comprehensive roles of VBF in CRC through systems biology and metabolomics approaches have been rarely investigated. AIMS OF THE STUDY: The study sought to uncover the potential underlying mechanisms of VBF's anti-cancer effects by investigating the impact of VBF on cellular metabolic balance. MATERIALS AND METHODS: An integrative approach combining biological network analysis, molecular docking and multi-dose metabolomics was used to predict the effects and mechanisms of VBF in CRC treatment. The prediction was verified by cell viability assay, EdU assay and flow cytometry. RESULTS: The results of the study indicate that VBF presents anti-CRC effects and impacts cellular metabolic balance through its impact on cell cycle-regulating proteins, such as MTOR, CDK1, and TOP2A. The results of the multi-dose metabolomics analysis suggest a dose-dependent reduction of metabolites related to DNA synthesis after VBF treatment, while the EdU and flow cytometry results indicate that VBF inhibits cell proliferation and arrests the cell cycle at the S and G2/M phases. CONCLUSIONS: These findings suggest that VBF disrupts purine and pyrimidine pathways in CRC cancer cells, leading to cell cycle arrest. This proposed workflow integrating molecular docking, multi-dose metabolomics, and biological validation, which contented EdU assay, cell cycle assay, provides a valuable framework for future similar studies.


Subject(s)
Colorectal Neoplasms , Drugs, Chinese Herbal , Humans , Network Pharmacology , Molecular Docking Simulation , Metabolomics , Colorectal Neoplasms/drug therapy
12.
Anal Methods ; 15(6): 719-728, 2023 02 09.
Article in English | MEDLINE | ID: mdl-36722963

ABSTRACT

The prediction accuracy of calibration models for near-infrared (NIR) spectroscopy typically relies on the morphology and homogeneity of the samples. To achieve non-homogeneous tobacco samples for non-destructive and rapid analysis, a method that can predict tobacco filament samples using reliable models based on the corresponding tobacco powder is proposed here. First, as it is necessary to establish a simple and robust calibrated model with excellent performance, based on full-wavelength PLSR (Full-PLSR), the key feature variables were screened by three methods, namely competitive adaptive reweighted sampling (CARS), variable combination population analysis-iteratively retaining informative variables (VCPA-IRIV), and variable combination population analysis-genetic algorithm (VCPA-GA). The partial least squares regression (PLSR) models for predicting the total sugar content in tobacco were established based on three optimal wavelength sets and named CARS-PLSR, VCPA-IRIV-PLSR and VCPA-GA-PLSR, respectively. Subsequently, they were combined with different calibration transfer algorithms, including calibration transfer based on canonical correlation analysis (CTCCA), slope/bias correction (S/B) and non-supervised parameter-free framework for calibration enhancement (NS-PFCE), to evaluate the best prediction model for the tobacco filament samples. Compared with the previous two transfer algorithms, NS-PFCE performed the best under various wavelength conditions. The prediction results indicated that the most successful approach for predicting the tobacco filament samples was achieved by VCPA-IRIV-PLSR when coupled with the NS-PFCE method, which obtained the highest determination coefficient (Rp2 = 0.9340) and the lowest root mean square error of the prediction set (RMSEP = 0.8425). VCPA-IRIV simplifies the calibration model and improves the efficiency of model transfer (31 variables). Furthermore, it pledges the prediction accuracy of the tobacco filament samples when combined with NS-PFCE. In summary, calibration transfer based on optimized feature variables can eliminate prediction errors caused by sample morphological differences and proves to be a more beneficial method for online application in the tobacco industry.


Subject(s)
Algorithms , Nicotiana , Calibration , Feasibility Studies , Spectroscopy, Near-Infrared/methods
13.
Plant Foods Hum Nutr ; 78(1): 68-75, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36322321

ABSTRACT

Lycium barbarum (LB) is a famous traditional Chinese medicinal plant as well as food supplement possessing various pharmacological functions such as anti-aging and antioxidant effects. The Parkinson's disease (PD)-related kinase Pink1 plays vital role in maintaining the neuron cell homeostasis, having been recognized as a potential target for the development of anti-PD drugs. In this work, the neuroprotective effects of methanol extract of LB fruit (LBFE) were investigated using a Drosophila PD model (PINK1B9) and a human neuroblastoma SH-SY5Y cell line. We found that when LBFE was supplied to the PINK1B9 flies at 6, 12, and 18 days of age, it raised the ATP and dopamine levels at all ages, extended life span, improved motor behavior, and rescued olfactory deficits of the PINK1B9 flies. In addition, histopathological examinations indicated that muscle atrophy in thoraces of the mutant flies was significantly repaired. Finally, LBFE was able to rescue the SH-SY5Y cells against MPP+-induced neurotoxicity. This work reports for the first time the anti-PD potential of L. barbarum fruit extract in PINK1 mutant fruit flies, presenting a new viewpoint for studing the mechanism of action of LBFE.


Subject(s)
Drosophila Proteins , Lycium , Neuroblastoma , Neuroprotective Agents , Parkinson Disease , Animals , Humans , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Parkinson Disease/genetics , Neuroprotective Agents/pharmacology , Lycium/metabolism , Models, Genetic , Plant Extracts/pharmacology , Protein Kinases/pharmacology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/pharmacology
14.
Int J Mol Sci ; 23(21)2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36361664

ABSTRACT

Some traditional acidic ionic liquids (AILs) have shown great catalytic potential in esterification; meanwhile, the design and application of more new AILs are expected at present.Tropine-based functionalized acidic ionic liquids (FAILs) were synthesized to realize esterification catalysis for the first time; with aspirin synthesis as the template reaction, key influences on the substrate conversion and product yield of the synthesis, such as IL type, ratio of salicylic acid to acetic anhydride, temperature, reaction time and amount of IL, were investigated. The new tropine-based FAILs exhibited excellent performance in catalytic synthesis of aspirin with 88.7% yield and 90.8% selectivity. Multiple recovery and re-usage of N-(3-propanesulfonic acid) tropine is the cation, and p-toluenesulfonic acid is the anion. ([Trps][OTs]) shows satisfactory results. When [Trps][OTs] was used to catalyze different esterification reactions, it also showed good results. The above studies proved that ionic liquid [Trps][OTs] could serve as an ideal green solvent for esterification reaction, which serves as a suitable substitute for current catalysts.


Subject(s)
Ionic Liquids , Acids , Aspirin , Catalysis , Esterification
15.
Molecules ; 27(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36431993

ABSTRACT

Salvia miltiorrhiza Bge is a medicinal plant (Chinese name "Danshen") widely used for the treatment of hyperglycemia in traditional Chinese medicine. Protein tyrosine phosphatase 1B (PTP1B) has been recognized as a potential target for insulin sensitizing for the treatment of diabetes. In this work, PTP1B was displayed at the surface of E. coli cells (EC-PTP1B) to be used as a bait for fishing of the enzyme's inhibitors present in the aqueous extract of S. miltiorrhiza. Salvianolic acid B, a polyphenolic compound, was fished out by EC-PTP1B, which was found to inhibit PTP1B with an IC50 value of 23.35 µM. The inhibitory mechanism of salvianolic acid B was further investigated by enzyme kinetic experiments and molecular docking, indicating salvianolic acid B was a non-competitive inhibitor for PTP1B (with Ki and Kis values of 31.71 µM and 20.08 µM, respectively) and its binding energy was -7.89 kcal/mol. It is interesting that in the comparative work using a traditional ligand fishing bait of PTP1B-immobilized magnetic nanoparticles (MNPs-PTP1B), no ligands were extracted at all. This study not only discovered a new PTP1B inhibitor from S. miltiorrhiza which is significant to understand the chemical basis for the hypoglycemic activity of this plant, but also indicated the effectiveness of cell display-based ligand fishing in screening of active compounds from complex herbal extracts.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1 , Salvia miltiorrhiza , Escherichia coli/metabolism , Ligands , Molecular Docking Simulation , Salvia miltiorrhiza/metabolism
16.
RSC Adv ; 12(50): 32641-32651, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36425697

ABSTRACT

With the development of near-infrared (NIR) spectroscopy, various calibration transfer algorithms have been proposed, but such algorithms are often based on the same distribution of samples. In machine learning, calibration transfer between types of samples can be achieved using transfer learning and does not need many samples. This paper proposed an instance transfer learning algorithm based on boosted weighted extreme learning machine (weighted ELM) to construct NIR quantitative analysis models based on different instruments for tobacco in practical production. The support vector machine (SVM), weighted ELM, and weighted ELM-AdaBoost models were compared after the spectral data were preprocessed by standard normal variate (SNV) and principal component analysis (PCA), and then the weighted ELM-TrAdaBoost model was built using data from the other domain to realize the transfer from different source domains to the target domain. The coefficient of determination of prediction (R 2) of the weighted ELM-TrAdaBoost model of four target components (nicotine, Cl, K, and total nitrogen) reached 0.9426, 0.8147, 0.7548, and 0.6980. The results demonstrated the superiority of ensemble learning and the source domain samples for model construction, improving the models' generalization ability and prediction performance. This is not a bad approach when modeling with small sample sizes and has the advantage of fast learning.

17.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293456

ABSTRACT

Imidazolium-based ionic liquids are wildly used in natural product adsorption and purification. In this work, one typical polymeric ionic liquid (PIL) was synthesized by using L-proline as the anion, which exhibited excellent adsorption capacity toward tea polyphenol epigallocatechin gallate (EGCG). The adsorption conditions were optimized with the response surface method (RSM). Under the optimum conditions, the adsorption capacity of the PIL for EGCG can reach as high as 552 mg/g. Dynamics and isothermal research shows that the adsorption process of EGCG by the PIL particularly meets the quasi-second-order kinetic equation and monolayer adsorption mechanism. According to thermodynamic parameter analysis, the adsorption process is endothermic and spontaneous. The results of theoretical calculation by molecular docking also demonstrated the interaction mechanisms between EGCG and the ionic liquid. Considering the wide application of imidazolium-based ionic liquids in component adsorption and purification, the present study can not only be extended to other similar experimental mechanism validation, but also be representative for guiding the synthesis of PIL and optimization of adsorption conditions.


Subject(s)
Biological Products , Ionic Liquids , Polyphenols , Molecular Docking Simulation , Polymers , Tea , Proline
18.
Appetite ; 179: 106278, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35988799

ABSTRACT

Psychological distress is a possible trigger contributing to food addiction, which is characterized by a loss of behavioral control and compulsive food intake. However, little is known about its underlying mechanisms. Self-control, an important self-regulation skill, may mediate the effect of psychological distress on food addiction. A cross-sectional survey was used to explore the direct relationship between psychological distress and food addiction, and the mediating role of self-control in this relationship. Food addiction, psychological distress, and self-control were evaluated using the Chinese versions of the Yale Food Addiction Scale 2.0, Depression-Anxiety-Stress Scale, and Self-control Scale, respectively. Correlation analyses showed that food addiction was positively correlated with psychological distress, but negatively related to self-control. Structural equation modeling revealed the mediating role of self-control in the relationship between food addiction and psychological distress. As a significant predictor of food addiction, psychological distress may induce food addiction directly or indirectly through the effect of self-control. These findings provide a deeper understanding of the relationship between psychological distress and food addiction, and the underlying mechanism. As such, psychological distress and self-control should be included in prevention and intervention strategies to address food addiction among college students.


Subject(s)
Food Addiction , Psychological Distress , Self-Control , Cross-Sectional Studies , Humans , Students/psychology
19.
Signal Transduct Target Ther ; 6(1): 353, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34593766

ABSTRACT

Pseudomonas aeruginosa infection continues to be a major threat to global public health, and new safe and efficacious vaccines are needed for prevention of infections caused by P. aeruginosa. X-ray irradiation has been used to prepare whole-cell inactivated vaccines against P. aeruginosa infection. However, the immunological mechanisms of X-ray-inactivated vaccines are still unclear and require further investigation. Our previous study found that an X-ray-inactivated whole-cell vaccine could provide protection against P. aeruginosa by boosting T cells. The aim of the present study was to further explore the immunological mechanisms of the vaccine. Herein, P. aeruginosa PAO1, a widely used laboratory strain, was utilized to prepare the vaccine, and we found nucleic acids and 8-hydroxyguanosine in the supernatant of X-ray-inactivated PAO1 (XPa). By detecting CD86, CD80, and MHCII expression, we found that XPa fostered dentritic cell (DC) maturation by detecting. XPa stimulated the cGAS-STING pathway as well as Toll-like receptors in DCs in vitro, and DC finally underwent apoptosis and pyroptosis after XPa stimulation. In addition, DC stimulated by XPa induced CD8+ T-cell proliferation in vitro and generated immunologic memory in vivo. Moreover, XPa vaccination induced both Th1 and Th2 cytokine responses in mice and reduced the level of inflammatory factors during infection. XPa protected mice in pneumonia models from infection with PAO1 or multidrug-resistant clinical isolate W9. Chronic obstructive pulmonary disease (COPD) mice immunized with XPa could resist PAO1 infection. Therefore, a new mechanism of an X-ray-inactivated whole-cell vaccine against P. aeruginosa infection was discovered in this study.


Subject(s)
Membrane Proteins/immunology , Nucleotidyltransferases/immunology , Pseudomonas Infections/immunology , Pseudomonas Vaccines/immunology , Pseudomonas aeruginosa/immunology , Signal Transduction/immunology , Animals , Membrane Proteins/genetics , Mice , Mice, Knockout , Nucleotidyltransferases/genetics , Pseudomonas Infections/genetics , Pseudomonas Vaccines/pharmacology , RAW 264.7 Cells , Signal Transduction/genetics
20.
Nat Methods ; 18(6): 652-660, 2021 06.
Article in English | MEDLINE | ID: mdl-33958790

ABSTRACT

Deciphering mechanisms in cell-fate decisions requires single-cell holistic reconstructions of multidimensional epigenomic states in transcriptional regulation. Here we develop CoTECH, a combinatorial barcoding method allowing high-throughput single-cell joint detection of chromatin occupancy and transcriptome. We used CoTECH to examine bivalent histone marks (H3K4me3 and H3K27me3) with transcription from naive to primed mouse embryonic stem cells. We also derived concurrent bivalent marks in pseudosingle cells using transcriptome as an anchor for resolving pseudotemporal bivalency trajectories and disentangling a context-specific interplay between H3K4me3/H3K27me3 and transcription level. Next, we revealed the regulatory basis of endothelial-to-hematopoietic transition in two waves of hematopoietic cells and distinctive enhancer-gene-linking schemes guiding hemogenic endothelial cell emergence, indicating a unique epigenetic control of transcriptional regulation for hematopoietic stem cell priming. CoTECH provides an efficient framework for single-cell coassay of chromatin occupancy and transcription, thus enabling higher-dimensional epigenomic reconstructions.


Subject(s)
Chromatin/metabolism , Epigenomics , Single-Cell Analysis/methods , Transcriptome , Animals , DNA/genetics , HEK293 Cells , Humans , Mice , Mouse Embryonic Stem Cells/metabolism , NIH 3T3 Cells , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL