Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2400870, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553790

ABSTRACT

Thermoelectric materials are highly promising for waste heat harvesting. Although thermoelectric materials research has expanded over the years, bismuth telluride-based alloys are still the best for near-room-temperature applications. In this work, a ≈38% enhancement of the average ZT (300-473 K) to 1.21 is achieved by mixing Bi0.4Sb1.6Te3 with an emerging thermoelectric material Sb2Si2Te6, which is significantly higher than that of most BiySb2-yTe3-based composites. This enhancement is facilitated by the unique interface region between the Bi0.4Sb1.6Te3 matrix and Sb2Si2Te6-based precipitates with an orderly atomic arrangement, which promotes the transport of charge carriers with minimal scattering, overcoming a common factor that is limiting ZT enhancement in such composites. At the same time, high-density dislocations in the same region can effectively scatter the phonons, decoupling the electron-phonon transport. This results in a ≈56% enhancement of the thermoelectric quality factor at 373 K, from 0.41 for the pristine sample to 0.64 for the composite sample. A single-leg device is fabricated with a high efficiency of 5.4% at ΔT = 164 K further demonstrating the efficacy of the Sb2Si2Te6 compositing strategy and the importance of the precipitate-matrix interface microstructure in improving the performance of materials for relatively low-temperature applications.

2.
Small ; 20(5): e2306248, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37759392

ABSTRACT

The Bi0.5 Sb1.5 Te3 (BST) thin film shows great promise in harvesting low-grade heat energy due to its excellent thermoelectric performance at room temperature. In order to further enhance its thermoelectric performance, specifically the power factor and output power, new approaches are highly desirable beyond the common "composition-structure-performance" paradigm. This study introduces ferroelectric polarization engineering as a novel strategy to achieve these goals. A Pb(Zr0.52 Ti0.48 )O3 /Bi0.5 Sb1.5 Te3 (PZT/BST) hybrid film is fabricated via magnetron sputtering. Density functional theory calculations demonstrate PZT polarization's influence on charge redistribution and interlayer charge transfer at the PZT/BST interface, facilitating adjustable carrier transport behavior and power factor of the BST film. As a result, a 26.7% enhancement of the power factor, from unpolarized 12.0 to 15.2 µW cm-1 K-2 , is reached by 2 kV out-of-plane downward polarization of PZT. Furthermore, a five-leg generator constructed using this PZT/BST hybrid film exhibits a maximum output power density of 13.06 W m-2 at ΔT = 39 K, which is 20.8% higher than that of the unpolarized one (10.81 W m-2 ). The research presents a new approach to enhance thermoelectric thin films' power factor and output performance by introducing ferroelectric polarization engineering.

3.
Small ; 20(2): e2304311, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37697695

ABSTRACT

Due to the increased integration and miniaturization of electronic devices, traditional electronic packaging materials, such as epoxy resin (EP), cannot solve electromagnetic interference (EMI) in electronic devices. Thus, the development of multifunctional electronic packaging materials with superior electromagnetic wave absorption (EMA), high heat dissipation, and flame retardancy is critical for current demand. This study employs an in-situ growth method to load layered double hydroxides (LDH) onto transition metal carbides (MXene), synthesizing a novel composite material (MXene@LDH). MXene@LDH possesses a sandwich structure and exhibits excellent EMA performance, thermal conductivity, and flame retardancy. By adjusting the load of LDH, under the synergistic effect of multiple factors, such as dielectric and polarization losses, this work achieves an EMA material with a remarkable minimum reflection loss (RL) of -52.064 dB and a maximum effective absorption bandwidth (EAB) of 4.5 GHz. Furthermore, MXene@LDH emerges a bridging effect in EP, namely MXene@LDH/EP, leading to a 118.75% increase in thermal conductivity compared to EP. Simultaneously, MXene@LDH/EP contributes to the enhanced flame retardancy compared to EP, resulting in a 46.5% reduction in the total heat release (THR). In summary, this work provides a promising candidate advanced electronic packaging material for high-power density electronic packaging.

4.
Small ; : e2306786, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38061990

ABSTRACT

There is increasing demand to power Internet of Things devices using ambient energy sources. Flexible, low-temperature, organic/inorganic thermoelectric devices are a breakthrough next-generation approach to meet this challenge. However, these systems suffer from poor performance and expensive processing preventing wide application of the technology. In this study, by combining a ferroelectric polymer (Polyvinylidene fluoride (PVDF, ß phase)) with p-type Bi0.5 Sb1.5 Te3 (BST) a thermoelectric composite film with maximum is produced power factor. Energy filter from ferroelectric-thermoelectric junction also leads to high Seebeck voltage ≈242 µV K-1 . For the first time, compelling evidence is provided that the dipole of a ferroelectric material is helping decouple electron transport related to carrier mobility and the Seebeck coefficient, to provide 5× or more improvement in thermoelectric power factor. The best composition, PVDF/BST film with BST 95 wt.% has a power factor of 712 µW•m-1  K-2 . A thermoelectric generator fabricated from a PVDF/BST film demonstrated Pmax T 12.02 µW and Pdensity 40.8 W m-2 under 50 K temperature difference. This development also provides a new insight into a physical technique, applicable to both flexible and non-flexible thermoelectrics, to obtain comprehensive thermoelectric performance.

5.
ACS Appl Mater Interfaces ; 15(42): 49259-49269, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37830755

ABSTRACT

The thermoelectric performance of n-type Bi2Te3 needs further enhancement to match that of its p-type Bi2Te3 counterpart and should be considered for competitive applications. Combining Cu/Cl and multiscale additives (AgBiSe2) presents a suitable route for such enhancement. This is evidence of the enhanced thermoelectric performance of Bi1.995Cu0.005Te2.69Se0.33Cl0.03. Moreover, by incorporating 0.65 wt % AgBiSe2 (ABS) into Bi1.995Cu0.005Te2.69Se0.33Cl0.03, we further reduce its lattice thermal conductivity to ∼0.28 W m-1 K-1 at 353 K owing to the extra phonon scattering of multiscale ABS. Additionally, the Seebeck coefficient enhances (-183.89 µV K-1 at 353 K) owing to the matrix's reduced carrier concentration caused by ABS. As a result, we achieve a high ZT of ∼1.25 (at 353 K) and a high ZTave of ∼1.12 at 300-433 K for Bi1.995Cu0.005Te2.69Se0.33Cl0.03 + 0.65 wt % ABS. This work provides a promising strategy for enhancing the thermoelectric performance of n-type Bi2Te3 through Cu/Cl doping and ABS incorporation.

6.
Small ; 19(29): e2301963, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178393

ABSTRACT

Cu2 SnS3 is a promising thermoelectric candidate for power generation at medium temperature due to its low-cost and environmental-benign features. However, the high electrical resistivity due to low hole concentration severely restricts its final thermoelectric performance. Here, analog alloying with CuInSe2 is first adopted to optimize the electrical resistivity by promoting the formation of Sn vacancies and the precipitation of In, and optimize lattice thermal conductivity through the formation of stacking faults and nanotwins. Such analog alloying enables a greatly enhanced power factor of 8.03 µW cm-1 K-2 and a largely reduced lattice thermal conductivity of 0.38 W m-1  K-1 for Cu2 SnS3 - 9 mol.% CuInSe2 . Eventually, a peak ZT as high as 1.14 at 773 K is achieved for Cu2 SnS3 - 9 mol.% CuInSe2 , which is one of the highest ZT among the researches on Cu2 SnS3 -based thermoelectric materials. The work implies analog alloying with CuInSe2 is a very effective route to unleash superior thermoelectric performance of Cu2 SnS3 .

7.
Small ; 19(35): e2300745, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37104824

ABSTRACT

Interfacial charge effects, such as band bending, modulation doping, and energy filtering, are critical for improving electronic transport properties of superlattice films. However, effectively manipulating interfacial band bending has proven challenging in previous studies. In this study, (1T'-MoTe2 )x (Bi2 Te3 )y superlattice films with symmetry-mismatch were successfully fabricated via the molecular beam epitaxy. This enables to manipulate the interfacial band bending, thereby optimizing the corresponding thermoelectric performance. These results demonstrate that the increase of Te/Bi flux ratio (R) effectively tailored interfacial band bending, resulting in a reduction of the interfacial electric potential from ≈127 meV at R = 16 to ≈73 meV at R = 8. It is further verified that a smaller interfacial electric potential is more beneficial for optimizing the electronic transport properties of (1T'-MoTe2 )x (Bi2 Te3 )y . Especially, the (1T'-MoTe2 )1 (Bi2 Te3 )12 superlattice film displays the highest thermoelectric power factor of 2.72 mW m-1 K-2 among all films, due to the synergy of modulation doping, energy filtering, and the manipulation of band bending. Moreover, the lattice thermal conductivity of the superlattice films is significantly reduced. This work provides valuable guidance to manipulate the interfacial band bending and further enhance the thermoelectric performances of superlattice films.

8.
ACS Appl Mater Interfaces ; 14(49): 54803-54811, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36459084

ABSTRACT

Bismuth telluride-based (Bi2Te3) alloys have long been considered the best thermoelectric (TE) materials at room temperature. However, the n-type Bi2Te3 alloys always exhibit poor thermoelectric performance than their p-type counterpart, which severely limits the energy conversion efficiency of thermoelectric devices. Here, we demonstrate that incorporating AgBiSe2 can concurrently regulate the electrical and thermal transport properties as well as improve the mechanical performance of n-type Bi2Te2.69Se0.33Cl0.03 for high thermoelectric performance. Among these, AgBiSe2 effectively enhanced the Seebeck coefficients of n-type Bi2Te2.69Se0.33Cl0.03 due to the reduced carrier concentration and reduced the thermal conductivity of n-type Bi2Te2.69Se0.33Cl0.03 owing to the enhanced phonon scattering by AgBiSe2 as well as its low thermal conductivity nature. Consequently, the simultaneous optimization of electrical and thermal transport properties enables us to achieve a maximum ZT of ∼1.21 (at ∼353 K) and an average ZTave of ∼1.07 (300-433 K) for 3.5 wt % AgBiSe2-incorporated Bi2Te2.69Se0.33Cl0.03, which are ∼25.62 and ∼23.36% larger than those of Bi2Te2.69Se0.33Cl0.03, respectively. This work proves that the incorporation of AgBiSe2 is an efficient way to improve the thermoelectric performance of bismuth telluride-based materials.

9.
Small ; 18(46): e2204303, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36228102

ABSTRACT

The sharp reduction in size and increase in power density of next-generation integrated circuits lead to electromagnetic interference and heat failure being a key roadblock for their widespread applications in polymer-based electronic packaging materials. This work demonstrates a multifunctional epoxy-based composite (MDCF@LDH/EP) with high electromagnetic wave (EMW) absorption, thermal conductivity, and flame retardancy performance. In which, the synergistic effect of porous structure and heterointerface promotes the multiple reflection and absorption, and dielectric loss of EMW. A low reflection loss of -57.77 dB, and an effective absorption bandwidth of 7.20 GHz are achieved under the fillings of only 10 wt%. Meanwhile, a 241.4% enhanced thermal conductivity of EP is due to the high continuous 3D melamine-derived carbon foams (MDCF), which provides a broad path for the transport of phonons. In addition, MDCF@LDH/EP composite exhibits high thermal stability and flame retardancy, thanks to the physical barrier effect of MDCF@LDH combined with the high temperature cooling properties of NiAl-LDH-CO3 2- . Compared with pure epoxy resin, the peak heat release rate and the total heat release rate are reduced by 19.4% and 30.7%, respectively. Such an excellent comprehensive performance enables MDCF@LDH/EP to a promising electronic packaging material.

10.
J Colloid Interface Sci ; 628(Pt A): 696-704, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-35944300

ABSTRACT

The severe non-radiative recombination loss caused by SnO2/perovskite interface defects greatly hinders the further improvement of the performance and stability of flexible perovskite solar cells (PSCs). Herein, a series of halides KM (M = F, Cl, Br, I) were inserted as interface layers to modulate the SnO2/perovskite interface. Both experimental and theoretical calculation demonstrated that F- exhibited stronger interface coupling effect between the SnO2 and perovskite than other halide ions (Cl-, Br-, I-). The F- had unique effects in effectively depressing SnO2/perovskite interface defects ascribed to the simultaneous formation of SnF bonds and hydrogen bonds, resulting in reduced non-radiative recombination and improved interfacial contact. In consequence, the champion KF-modified flexible and rigid PSCs delivered outstanding PCE of 18.16 % and 21.36 %, accompanied by the enhanced VOC of 1.14 V and 1.16 V, respectively. Meanwhile, the stability of flexible PSCs was significantly ameliorated after KF modification, and about 84 % of the original efficiency could be retained even after 3000 bending cycles. This work provides a facile and efficient strategy for interface modulation to achieve high-performance and stable flexible PSCs.

11.
ACS Appl Mater Interfaces ; 14(32): 37204-37212, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35917399

ABSTRACT

An increasing number of studies have reported producing composite structures by combining thermoelectric and functional materials. However, combining energy filtering and ferroelectric polarization to enhance the dimensionless figure of merit thermoelectric ZT remains elusive. Here we report a composite that contains nanostructured BaTiO3 embedded in a Bi0.5Sb1.5Te3 matrix. We show that ferroelectric BaTiO3 particles are evenly composited with Bi0.5Sb1.5Te3 grains reducing the concentration of free charge carriers with increasing BaTiO3 content. Additionally, as a result of the energy-filtering effect and ferroelectric polarization, the Seebeck coefficient was improved by ∼10% with a ∼10% improvement in power factors. The BaTiO3 phase can effectively scatters phonons reducing lattice thermal conductivity κl (0.5 W m-1 K-1) and increasing ZT to 1.31 at 363 K in Bi0.5Sb1.5Te3 composites with 2 vol % BaTiO3 content giving an improvement of ∼25% over pure Bi0.5Sb1.5Te3. Our work indicates that the introduction of ferroelectric nanoparticles is an effective method for optimizing the ZT of Bi0.5Sb1.5Te3-based thermoelectric materials.

12.
J Am Chem Soc ; 144(16): 7402-7413, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35420804

ABSTRACT

Converting waste heat into useful electricity using solid-state thermoelectrics has a potential for enormous global energy savings. Lead chalcogenides are among the most prominent thermoelectric materials, whose performance decreases with an increase in chalcogen amounts (e.g., PbTe > PbSe > PbS). Herein, we demonstrate the simultaneous optimization of the electrical and thermal transport properties of PbS-based compounds by alloying with GeS. The addition of GeS triggers a complex cascade of beneficial events as follows: Ge2+ substitution in Pb2+ and discordant off-center behavior; formation of Pb5Ge5S12 as stable second-phase inclusions through valence disproportionation of Ge2+ to Ge0 and Ge4+. PbS and Pb5Ge5S12 exhibit good conduction band energy alignment that preserves the high electron mobility; the formation of Pb5Ge5S12 increases the electron carrier concentration by introducing S vacancies. Sb doping as the electron donor produces a large power factor and low lattice thermal conductivity (κlat) of ∼0.61 W m-1 K-1. The highest performance was obtained for the 14% GeS-alloyed samples, which exhibited an increased room-temperature electron mobility of ∼121 cm2 V-1 s-1 for 3 × 1019 cm-3 carrier density and a ZT of 1.32 at 923 K. This is ∼55% greater than the corresponding Sb-doped PbS sample and is one of the highest reported for the n-type PbS system. Moreover, the average ZT (ZTavg) of ∼0.76 from 400 to 923 K is the highest for PbS-based systems.

13.
ACS Appl Mater Interfaces ; 14(6): 7962-7971, 2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35119820

ABSTRACT

Tin oxide (SnO2) has been commonly used as an electron transport layer (ETL) in planar perovskite solar cells (p-PSCs) because it can be prepared by a low-temperature solution-processed method. However, the device performance has been restricted due to the limited electrical performance of SnO2 and its mismatched energy level alignment with the perovskite absorber. Considering these problems, sodium tungstate (Na2WO4) has been employed to modify the SnO2 ETL. The conduction band minimum of SnO2 increases and the defects at the ETL/perovskite interface decrease by the modification of the SnO2 ETL with Na2WO4, thus reducing the energy barrier between the ETL and perovskite. In addition, the electron extraction ability has been enhanced and the interface recombination between the ETL and perovskite has also been inhibited. As a result, the photovoltaic performance of p-PSCs based on the modified ETL has been improved, and a champion power conversion efficiency of 21.16% has been achieved compared with the control device of 17.30% with an open circuit voltage increased from 1.075 to 1.162 V.

14.
ACS Appl Mater Interfaces ; 14(7): 9192-9202, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35133800

ABSTRACT

A nanostructure has a significant role in enhancing the power factor and preventing the heat propagation for thermoelectric materials. Herein, we propose a unique segregated and percolated (SP) microphase-separated structure to enhance the thermoelectric performance of SnTe. The SP structure is composed of insoluble SnTe and AgCuTe, in which AgCuTe with ultralow lattice thermal conductivity undergoes a solid-phase welding during a spark plasma sintering process and forms continuous percolated layers at the interface of isolated SnTe. The SP structure achieved a simultaneous scattering for low energy holes due to the energy offset of the valence band maximum between SnTe and AgCuTe and for phonons due to the noncoherent interfaces between SnTe and AgCuTe, resulting in a high Seebeck coefficient of ∼219.4 µV/K and a low lattice thermal conductivity of ∼1.1 W m-1 K-1 at 800 K for (SnTe)0.55(AgCuTe)0.45. The thermoelectric performance was further enhanced by means of the cosubstitution of In and Mn for Sn in the SnTe lattice, inducing resonance levels and extra phonon scattering. As a result, the SP structure combined with In/Mn codoping enable us to achieve a low lattice thermal conductivity of 0.47 W m-1 K-1, a peak ZT of ∼1.45 at 800 K, and a high average ZT of ∼0.73 (400-800 K) for (Sn0.98In0.01Mn0.01Te)0.75(AgCuTe)0.25.

15.
J Am Chem Soc ; 144(3): 1445-1454, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35029977

ABSTRACT

Bi2Si2Te6, a 2D compound, is a direct band gap semiconductor with an optical band gap of ∼0.25 eV, and is a promising thermoelectric material. Single-phase Bi2Si2Te6 is prepared by a scalable ball-milling and annealing process, and the highly densified polycrystalline samples are prepared by spark plasma sintering. Bi2Si2Te6 shows a p-type semiconductor transport behavior and exhibits an intrinsically low lattice thermal conductivity of ∼0.48 W m-1 K-1 (cross-plane) at 573 K. The first-principles density functional theory calculations indicate that such low lattice thermal conductivity is derived from the interactions between acoustic phonons and low-lying optical phonons, local vibrations of Bi, the low Debye temperature, and strong anharmonicity result from the unique 2D crystal structure and metavalent bonding of Bi2Si2Te6. The Bi2Si2Te6 exhibits an optimal figure of merit ZT of ∼0.51 at 623 K, which can be further enhanced by the substitution of Bi with Pb. Pb doping leads to a large increase in power factor S2σ, from ∼3.9 µW cm-1 K-2 of Bi2Si2Te6 to ∼8.0 µW cm-1 K-2 of Bi1.98Pb0.02Si2Te6 at 773 K, owing to the increase in carrier concentration. Moreover, Pb doping induces a further reduction in the lattice thermal conductivity to ∼0.38 W m-1 K-1 (cross-plane) at 623 K in Bi1.98Pb0.02Si2Te6, due to strengthened point defect (PbBi') scattering. The simultaneous optimization of the power factor and lattice thermal conductivity achieves a peak ZT of ∼0.90 at 723 K and a high average ZT of ∼0.66 at 400-773 K in Bi1.98Pb0.02Si2Te6.

16.
J Clin Transl Res ; 8(6): 594-601, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36683652

ABSTRACT

Background and Aim: The modified Japanese Orthopaedic Association (mJOA) scale is one of the primary measures of neurological function used on patients with degenerative cervical myelopathy (DCM). Contrary to some reports, the mJOA is not based on patient-reported outcomes as it is an assessment conducted by physicians, allied health professionals, or trained staff. To date, the accuracy of post-operative recall by DCM patients of their pre-operative neurological function, as assessed by the mJOA scale, has not been examined. This study, therefore, aimed to evaluate recall accuracy in DCM patients using the mJOA scale. Methods: This study analyzed recall capacity of DCM patients who had undergone anterior cervical discectomy and fusion by a single surgeon at a large academic spine center between February 2012 and August 2017. Patient recall of neurological function pre-surgery was assessed at 3, 12, and 24 months post-surgery using the mJOA scale. Actual mJOA scores were also determined at each follow-up. Recall error (RE) was defined as the difference between recalled mJOA score at each post-operative visit and the actual baseline score. Age, gender, surgical segments, hospital length of stay, actual mJOA scores at follow-up, and actual rate of improvement in mJOA score were analyzed as predictors of recall accuracy. Descriptive statistics were collected to profile the characteristics of patients enrolled in the study cohort. All statistical computing and graphing were performed with R software and generalized estimating equation (GEE) model fitting was done using geepack package. Results: A total of 105 patients (56.2% of males and 43.8% of females) were enrolled in the study. The median ± SD (range) age at the pre-surgical baseline measurement was 50 ± 8 (25 - 78) years. The recalled mJOA scores at the three follow-up time points were lower than the actual mJOA scores. The recall accuracy gradually decreased over time. Estimated coefficients showed that all variables in the GEE model except for surgical fusion segments were significant (P < 0.05). The pre-operative actual baseline mJOA score was inversely associated with RE. An increasing actual mJOA score over time had a significant positive influence on RE. Greater RE was found in males compared to females. Unexpectedly, age was inversely associated with RE. Conclusions: The RE increases with the time interval between pre-surgical measurement and post-surgical follow-up and is more prominent in male DCMs patients following upper spine surgery. Relevance for Patients: It is necessary to select post-operative patients who need to pay attention according to the three factors of post-operative time, gender, and age, that is, patients with large RE should be given early or timely psychological counseling and treatment concerns, so as to reduce the occurrence of potential medical disputes and improve the level of medical safety.

17.
Nat Commun ; 12(1): 4793, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34373453

ABSTRACT

Thermoelectrics enable waste heat recovery, holding promises in relieving energy and environmental crisis. Lillianite materials have been long-term ignored due to low thermoelectric efficiency. Herein we report the discovery of superior thermoelectric performance in Pb7Bi4Se13 based lillianites, with a peak figure of merit, zT of 1.35 at 800 K and a high average zT of 0.92 (450-800 K). A unique quality factor is established to predict and evaluate thermoelectric performances. It considers both band nonparabolicity and band gaps, commonly negligible in conventional quality factors. Such appealing performance is attributed to the convergence of effectively nested conduction bands, providing a high number of valley degeneracy, and a low thermal conductivity, stemming from large lattice anharmonicity, low-frequency localized Einstein modes and the coexistence of high-density moiré fringes and nanoscale defects. This work rekindles the vision that Pb7Bi4Se13 based lillianites are promising candidates for highly efficient thermoelectric energy conversion.

18.
J Am Chem Soc ; 143(34): 13990-13998, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34410126

ABSTRACT

The reaction of MnTe with AgSbTe2 in an equimolar ratio (ATMS) provides a new semiconductor, AgMnSbTe3. AgMnSbTe3 crystallizes in an average rock-salt NaCl structure with Ag, Mn, and Sb cations statistically occupying the Na sites. AgMnSbTe3 is a p-type semiconductor with a narrow optical band gap of ∼0.36 eV. A pair distribution function analysis indicates that local distortions are associated with the location of the Ag atoms in the lattice. Density functional theory calculations suggest a specific electronic band structure with multi-peak valence band maxima prone to energy convergence. In addition, Ag2Te nanograins precipitate at grain boundaries of AgMnSbTe3. The energy offset of the valence band edge between AgMnSbTe3 and Ag2Te is ∼0.05 eV, which implies that Ag2Te precipitates exhibit a negligible effect on the hole transmission. As a result, ATMS exhibits a high power factor of ∼12.2 µW cm-1 K-2 at 823 K, ultralow lattice thermal conductivity of ∼0.34 W m-1 K-1 (823 K), high peak ZT of ∼1.46 at 823 K, and high average ZT of ∼0.87 in the temperature range of 400-823 K.

19.
ACS Appl Mater Interfaces ; 13(31): 37027-37034, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34323074

ABSTRACT

The lead-free double perovskite has been proven to be one of the promising alternatives to solve the stability and toxicity problems of lead-based organic-inorganic hybrid perovskite solar cells. Here, high-quality Cs2AgBiBr6 double perovskite films with large grains and smooth surface have been prepared through a sequential-vapor-deposition method, and a low-cost and eco-friendly Cu2O film with a suitable energy level and good electrical properties was prepared as an efficient hole transport layer by vacuum vapor deposition for the first time. The Cu2O-based devices achieve a champion power conversion efficiency increasing from 1.03 to 1.52% and an enhancement of photovoltage from 1.083 to 1.198 V compared with their organic counterparts. More importantly, the Cu2O-based devices have excellent stability; they maintained the initial 96% efficiency under environmental conditions after 33 days of unpackaged storage. These results also point out the direction for the further development of these new promising perovskite solar cells.

20.
Chem Soc Rev ; 50(16): 9022-9054, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34137396

ABSTRACT

Thermoelectric energy conversion is an all solid-state technology that relies on exceptional semiconductor materials that are generally optimized through sophisticated strategies involving the engineering of defects in their structure. In this review, we summarize the recent advances of defect engineering to improve the thermoelectric (TE) performance and mechanical properties of inorganic materials. First, we introduce the various types of defects categorized by dimensionality, i.e. point defects (vacancies, interstitials, and antisites), dislocations, planar defects (twin boundaries, stacking faults and grain boundaries), and volume defects (precipitation and voids). Next, we discuss the advanced methods for characterizing defects in TE materials. Subsequently, we elaborate on the influences of defect engineering on the electrical and thermal transport properties as well as mechanical performance of TE materials. In the end, we discuss the outlook for the future development of defect engineering to further advance the TE field.

SELECTION OF CITATIONS
SEARCH DETAIL
...