Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 460: 132349, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37657324

ABSTRACT

Cadmium (Cd) pollution of soil occurs worldwide. Phytoremediation is an effective approach for cleaning up Cd polluted soil. Fast growing Populus species with high Cd uptake capacities are desirable for phytoremediation. Thus, it is important to elucidate the molecular functions of genes involved in Cd uptake by poplars. In this study, PcPLAC8-10, a homolog of Human placenta-specific gene 8 (PLAC8) implicated in Cd transport was functionally characterized in Populus × canescens. PcPLAC8-10 was transcriptionally induced in Cd-treated roots and it encoded a plasma membrane-localized transporter. PcPLAC8-10 exhibited Cd uptake activity when expressed in yeast cells. No difference in growth was observed between wild type (WT) and PcPLAC8-10-overexpressing poplars. PcPLAC8-10-overexpressing poplars exhibited increases in net Cd2+ influxes by 192% and Cd accumulation by 57% in the roots. However, similar reductions in biomass were found in WT and transgenic poplars when exposed to Cd. The complete motif of CCXXXXCPC in PcPLAC8-10 was essential for its Cd transport activity. These results suggest that PcPLAC8-10 is a plasma membrane-localized transporter responsible for Cd uptake in the roots and the complete CCXXXXCPC motif of PcPLAC8-10 plays a key role in its Cd transport activity in poplars.


Subject(s)
Cadmium , Populus , Humans , Populus/genetics , Biological Transport , Ion Transport , Membrane Transport Proteins , Saccharomyces cerevisiae , Soil , Proteins
2.
Front Plant Sci ; 13: 941380, 2022.
Article in English | MEDLINE | ID: mdl-35874008

ABSTRACT

Circular RNAs (circRNAs) are a class of noncoding RNA molecules with ring structures formed by covalent bonds and are commonly present in organisms, playing an important regulatory role in plant growth and development. However, the mechanism of circRNAs in poplar root responses to different forms of nitrogen (N) is still unclear. In this study, high-throughput sequencing was used to identify and predict the function of circRNAs in the roots of poplar exposed to three N forms [1 mM NO3 - (T1), 0.5 mM NH4NO3 (T2, control) and 1 mM NH4 + (T3)]. A total of 2,193 circRNAs were identified, and 37, 24 and 45 differentially expressed circRNAs (DECs) were screened in the T1-T2, T3-T2 and T1-T3 comparisons, respectively. In addition, 30 DECs could act as miRNA sponges, and several of them could bind miRNA family members that play key roles in response to different N forms, indicating their important functions in response to N and plant growth and development. Furthermore, we generated a competing endogenous RNA (ceRNA) regulatory network in poplar roots treated with three N forms. DECs could participate in responses to N in poplar roots through the ceRNA regulatory network, which mainly included N metabolism, amino acid metabolism and synthesis, response to NO3 - or NH4 + and remobilization of N. Together, these results provide new insights into the potential role of circRNAs in poplar root responses to different N forms.

3.
Front Plant Sci ; 13: 890453, 2022.
Article in English | MEDLINE | ID: mdl-35646010

ABSTRACT

Nitrate (NO3 -) and ammonium (NH4 +) are the primary forms of inorganic nitrogen acquired by plant roots. LncRNAs, as key regulators of gene expression, are a class of non-coding RNAs larger than 200 bp. However, knowledge about the regulatory role of lncRNAs in response to different nitrogen forms remains limited, particularly in woody plants. Here, we performed strand-specific RNA-sequencing of P. × canescens roots under three different nitrogen fertilization treatments. In total, 324 lncRNAs and 6,112 mRNAs were identified as showing significantly differential expression between the NO3 - and NH4NO3 treatments. Moreover, 333 lncRNAs and 6,007 mRNAs showed significantly differential expression between the NH4 + and NH4NO3 treatments. Further analysis suggested that these lncRNAs and mRNAs have different response mechanisms for different nitrogen forms. In addition, functional annotation of cis and trans target mRNAs of differentially expressed lncRNAs indicated that 60 lncRNAs corresponding to 49 differentially expressed cis and trans target mRNAs were involved in plant nitrogen metabolism and amino acid biosynthesis and metabolism. Furthermore, 42 lncRNAs were identified as putative precursors of 63 miRNAs, and 28 differentially expressed lncRNAs were potential endogenous target mimics targeted by 96 miRNAs. Moreover, ceRNA regulation networks were constructed. MSTRG.6097.1, MSTRG.13550.1, MSTRG.2693.1, and MSTRG.12899.1, as hub lncRNAs in the ceRNA networks, are potential candidate lncRNAs for studying the regulatory mechanism in poplar roots under different nitrogen fertilization treatments. The results provide a basis for obtaining insight into the molecular mechanisms of lncRNA responses to different nitrogen forms in woody plants.

4.
Tree Physiol ; 42(9): 1799-1811, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35313352

ABSTRACT

To investigate the pivotal physiological processes modulating lead (Pb) tolerance capacities of poplars, the saplings of two contrasting poplar species, Populus × canescens with high Pb sensitivity and Populus nigra with relatively low Pb sensitivity, were treated with either 0 or 8 mM Pb for 6 weeks. Lead was absorbed by the roots and accumulated massively in the roots and leaves, leading to overproduction of reactive oxygen species, reduced photosynthesis and biomass in both poplar species. Particularly, the tolerance index of P. × canescens was significantly lower than that of P. nigra. Moreover, the physiological responses including the concentrations of nutrient elements, thiols, organic acids, phytohormones and nonenzymatic antioxidants, and the activities of antioxidative enzymes in the roots and leaves were different between the two poplar species. Notably, the differences in concentrations of nutrient elements, organic acids and phytohormones were remarkable between the two poplar species. A further evaluation of the Pb tolerance-related physiological processes showed that the change of 'sulfur (S) metabolism' in the roots was greater, and that of 'organic acid accumulation' in the roots and 'phytohormone regulation' in the leaves were markedly smaller in P. × canescens than those in P. nigra. These results suggest that there are differences in Pb tolerance capacities between P. × canescens and P. nigra, which is probably associated with their contrasting physiological responses to Pb stress, and that S metabolism, organic acid accumulation and phytohormone regulation are probably the key physiological processes modulating the different Pb tolerance capacities between the two poplar species.


Subject(s)
Physiological Phenomena , Populus , Antioxidants/metabolism , Lead/metabolism , Plant Growth Regulators , Plant Leaves/metabolism , Plant Roots/metabolism , Populus/metabolism , Stress, Physiological , Sulfur/metabolism
5.
Plant Cell Physiol ; 63(1): 30-44, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34508646

ABSTRACT

To investigate physiological and transcriptomic regulation mechanisms underlying the distinct net fluxes of NH4+ and NO3- in different root segments of Populus species under low nitrogen (N) conditions, we used saplings of Populus × canescens supplied with either 500 (normal N) or 50 (low N) µM NH4NO3. The net fluxes of NH4+ and NO3-, the concentrations of NH4+, amino acids and organic acids and the enzymatic activities of nitrite reductase (NiR) and glutamine synthetase (GS) in root segment II (SII, 35-70 mm to the apex) were lower than those in root segment I (SI, 0-35 mm to the apex). The net NH4+ influxes and the concentrations of organic acids were elevated, whereas the concentrations of NH4+ and NO3- and the activities of NiR and GS were reduced in SI and SII in response to low N. A number of genes were significantly differentially expressed in SII vs SI and in both segments grown under low vs normal N conditions, and these genes were mainly involved in the transport of NH4+ and NO3-, N metabolism and adenosine triphosphate synthesis. Moreover, the hub gene coexpression networks were dissected and correlated with N physiological processes in SI and SII under normal and low N conditions. These results suggest that the hub gene coexpression networks play pivotal roles in regulating N uptake and assimilation, amino acid metabolism and the levels of organic acids from the tricarboxylic acid cycle in the two root segments of poplars in acclimation to low N availability.


Subject(s)
Adaptation, Physiological/genetics , Ammonium Compounds/metabolism , Biological Transport/genetics , Nitrates/metabolism , Nitrogen/deficiency , Plant Roots/metabolism , Populus/metabolism , Genetic Variation , Genotype , Populus/genetics , Transcriptome
6.
Environ Pollut ; 271: 116346, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33387784

ABSTRACT

To explore whether lead (Pb)-induced defense responses are responsible for the low root-to-shoot Pb translocation, we exposed saplings of the two contrasting poplar species, Populus × canescens with relatively high root-to-shoot Pb translocation and P. nigra with low Pb translocation, to 0 or 8 mM PbCl2. Pb translocation from the roots to aboveground tissues was lower by 57% in P. nigra than that in P. × canescens. Lower Pb concentrations in the roots and aerial tissues, greater root biomass, and lower ROS overproduction in the roots were found in P. nigra than those in P. × canescens treated with Pb. P. nigra roots had higher proportions of cell walls (CWs)-bound Pb and water insoluble Pb compounds, and higher transcript levels of some pivotal genes related to Pb vacuolar sequestration, such as phytochelatin synthetase 1.1 (PCS1.1), ATP-binding cassette transporter C1.1 (ABCC1.1) and ABCC3.1 than P. × canescens roots. Pb exposure induced defense responses including increases in the contents of pectin and hemicellulose, and elevated oxalic acid accumulation, and the transcriptional upregulation of PCS1.1, ABCC1.1 and ABCC3.1 in the roots of P. nigra and P. × canescens. These results suggest that the stronger defense barriers in P. nigra roots are probably associated with the lower Pb translocation from the roots to aerial tissues, and that Pb exposure-induced defense responses can enhance the barriers against Pb translocation in poplar roots.


Subject(s)
Populus , Soil Pollutants , Lead/toxicity , Phytochelatins , Plant Roots , Populus/genetics , Soil Pollutants/toxicity
7.
Plant Cell Physiol ; 61(9): 1614-1630, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32678905

ABSTRACT

The process of cadmium (Cd) accumulation and detoxification under different sulfur levels remains largely unknown in woody plants. To investigate the physiological and transcriptomic regulation mechanisms of poplars in response to different sulfate (S) supply levels and Cd exposure, we exposed Populus deltoides saplings to one of the low, moderate and high S levels together with either 0 or 50 µM Cd. Cd accumulation was decreased in low S-treated poplar leaves, and it tended to be increased in high S-supplied leaves under the Cd exposure condition. Sulfur nutrition was deficient in low S-supplied poplars, and it was improved in high S-treated leaves. Cd exposure resulted in lower sulfur level in the leaves supplied with moderate S, it exacerbated a Cd-induced sulfur decrease in low S-treated leaves and it caused a higher sulfur concentration in high S-supplied leaves. In line with the physiological changes, a number of mRNAs and microRNAs (miRNAs) involved in Cd accumulation and sulfur assimilation were identified and the miRNA-mRNA networks were dissected. In the networks, miR395 and miR399 members were identified as hub miRNAs and their targets were ATP sulfurylase 3 (ATPS3) and phosphate 2 (PHO2), respectively. These results suggest that Cd accumulation and sulfur assimilation are constrained by low and enhanced by high S supply, and Cd toxicity is aggravated by low and relieved by high S in poplar leaves, and that miRNA-mRNA regulatory networks play pivotal roles in sulfur-mediated Cd accumulation and detoxification in Cd-exposed poplars.


Subject(s)
Cadmium/metabolism , MicroRNAs/physiology , Plant Leaves/metabolism , Populus/metabolism , RNA, Messenger/physiology , RNA, Plant/physiology , Sulfur/metabolism , Gene Expression Regulation, Plant/genetics , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology , MicroRNAs/metabolism , Populus/genetics , RNA, Messenger/metabolism , RNA, Plant/metabolism
8.
Tree Physiol ; 40(10): 1392-1404, 2020 10 07.
Article in English | MEDLINE | ID: mdl-32542375

ABSTRACT

Different root zones have distinct capacities for nitrate (NO3-) uptake in Populus species, but the underlying physiological and microRNA (miRNA) regulatory mechanisms remain largely unknown. To address this question, two root zones of Populus × canescens (Ait.) Smith. with contrasting capacities for NO3- uptake were investigated. The region of 0-40 mm (root zone I) to the root apex displayed net influxes, whereas the region of 40-80 mm (root zone II) exhibited net effluxes. Concentrations of NO3- and ammonium (NH4+) as well as nitrate reductase activity were lower in zone II than in zone I. Forty one upregulated and twenty three downregulated miRNAs, and 576 targets of these miRNAs were identified in zone II in comparison with zone I. Particularly, growth-regulating factor 4 (GRF4), a target of upregulated ptc-miR396g-5p and ptc-miR396f_L + 1R-1, was downregulated in zone II in comparison with zone I, probably contributing to lower NO3- uptake rates and assimilation in zone II. Furthermore, several miRNAs and their targets, members of C2H2 zinc finger family and APETALA2/ethylene-responsive element binding protein family, were found in root zones, which probably play important roles in regulating NO3- uptake. These results indicate that differentially expressed miRNA-target pairs play key roles in regulation of distinct NO3- uptake rates and assimilation in different root zones of poplars.


Subject(s)
Populus , Nitrates , Nitrogen , Plant Roots/genetics , Populus/genetics , Sequence Analysis, RNA
9.
Plant Cell Physiol ; 60(11): 2478-2495, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31368491

ABSTRACT

Although poplar plantations are often established on nitrogen (N)-poor soil, the physiological and molecular mechanisms underlying wood properties of poplars in acclimation to low N availability remain largely unknown. To investigate wood properties of poplars in acclimation to low N, Populus � canescens saplings were exposed to either 50 (low N) or 500 (normal N) �M NH4NO3 for 2 months. Low N resulted in decreased xylem width and cell layers of the xylem (the number of cells counted along the ray parenchyma on the stem cross section), narrower lumina of vessels and fibers, greater thickness of double fiber walls (the walls between two adjacent fiber cells), more hemicellulose and lignin deposition, and reduced cellulose accumulation in poplar wood. Consistently, concentrations of gibberellins involved in cell size determination and the abundance of various metabolites including amino acids, carbohydrates and precursors for cell wall biosynthesis were decreased in low N-supplied wood. In line with these anatomical and physiological changes, a number of mRNAs, long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) were significantly differentially expressed. Competing endogenous RNA regulatory networks were identified in the wood of low N-treated poplars. Overall, these results indicate that miRNAs-lncRNAs-mRNAs networks are involved in regulating wood properties and physiological processes of poplars in acclimation to low N availability.


Subject(s)
Amino Acids/metabolism , Metabolomics/methods , Plant Growth Regulators/metabolism , Populus/metabolism , Amino Acids/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Populus/genetics , Xylem/genetics , Xylem/metabolism
10.
J Hazard Mater ; 362: 275-285, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30243250

ABSTRACT

To shed light on physiological mechanisms underlying abscisic-acid (ABA)-mediated lead (Pb) uptake, translocation and detoxification, we exposed Populus × canescens saplings to either 0 or 3 mM Pb2+ in combination with either 0 or 10 µM exogenous ABA. Pb was taken up by the roots and accumulated mainly in the cortex. A fraction of the Pb in the roots was translocated to the leaves, thereby resulting in decreased photosynthesis and biomass. Pb accumulation caused a burst of reactive oxygen species (ROS), with higher concentrations of total thiols, glutathione, and ascorbate in the roots and/or leaves. Exogenous ABA stimulated Pb uptake, decreased Pb deposition in the cortex, and enhanced Pb vascular loading in the roots. Exogenous ABA alleviated the Pb-induced reductions in photosynthesis and root biomass, and decreased Pb-triggered ROS overproduction in the roots and/or leaves. Correspondingly, exogenous ABA stimulated the mRNA levels of a few genes involved in Pb uptake, transport, and detoxification, including NRAMP1.4, ABCG40, FRD3.1, PCS1.1, and ABCC1.1. These results suggest that exogenous ABA enhances Pb uptake and translocation, and alleviates Pb toxicity in poplars through the ABA-induced movement of Pb from the root cortex to the vascular stele, and transcriptionally regulated key genes involved in Pb tolerance.


Subject(s)
Abscisic Acid/chemistry , Lead/toxicity , Plant Leaves/metabolism , Plant Roots/metabolism , Populus/metabolism , Adsorption , Antioxidants/metabolism , Ascorbic Acid/metabolism , Gene Expression Regulation, Plant , Glutathione/metabolism , Oxidative Stress , Photosynthesis , Phylogeny , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/chemistry
11.
Plant Cell Environ ; 42(4): 1087-1103, 2019 04.
Article in English | MEDLINE | ID: mdl-30375657

ABSTRACT

Uptake, translocation, detoxification, and sequestration of heavy metals (HMs) are key processes in plants to deal with excess amounts of HM. Under natural conditions, plant roots often establish ecto- and/or arbuscular-mycorrhizae with their fungal partners, thereby altering HM accumulation in host plants. This review considers the progress in understanding the physiological and molecular mechanisms involved in HM accumulation in nonmycorrhizal versus mycorrhizal plants. In nonmycorrhizal plants, HM ions in the cells can be detoxified with the aid of several chelators. Furthermore, HMs can be sequestered in cell walls, vacuoles, and the Golgi apparatus of plants. The uptake and translocation of HMs are mediated by members of ZIPs, NRAMPs, and HMAs, and HM detoxification and sequestration are mainly modulated by members of ABCs and MTPs in nonmycorrhizal plants. Mycorrhizal-induced changes in HM accumulation in plants are mainly due to HM sequestration by fungal partners and improvements in the nutritional and antioxidative status of host plants. Furthermore, mycorrhizal fungi can trigger the differential expression of genes involved in HM accumulation in both partners. Understanding the molecular mechanisms that underlie HM accumulation in mycorrhizal plants is crucial for the utilization of fungi and their host plants to remediate HM-contaminated soils.


Subject(s)
Metals, Heavy/metabolism , Mycorrhizae/physiology , Plant Roots/metabolism , Plants/metabolism , Mycorrhizae/metabolism , Plant Roots/microbiology , Plant Roots/physiology , Plants/microbiology
12.
Tree Physiol ; 38(11): 1724-1741, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29939370

ABSTRACT

Sulfur (S) can modulate plant responses to toxic heavy metals, but the underlying physiological and transcriptional regulation mechanisms remain largely unknown. To investigate the effects of S supply on lead (Pb)-induced toxicity in poplars, Populus deltoides monilifera (Aiton) Eckenw. saplings were exposed to 0 or 50 µM Pb together with one of the three S concentrations (0 (low S), 100 (moderate S) or 1500 (high S) µM Na2SO4). Populus deltoides roots absorbed Pb and it was partially translocated to the aerial organs, thereby decreasing the CO2 assimilation rate and leaf growth. Lead accumulation in poplars caused the overproduction of O2- and H2O2 to induce higher levels of total thiols (T-SH) and glutathione (GSH). Lead uptake by the roots and its accumulation in the aerial organs were repressed by low S application, but stimulated by high S supply. Lead-induced O2- and H2O2 production were exacerbated by S limitation, but alleviated by high S supply. Moreover, the concentrations of S-containing antioxidants including T-SH and GSH were reduced in S-deficient poplars, but increased in high S-treated plants, which corresponded well to the changes in the activities of enzymes involved in S assimilation and GSH biosynthesis. The transcript levels of both genes encoding sulfate transporters, i.e., SULTR1.1 and SULTR2.2, were elevated by low S application or high S supply in the roots, and the transcriptional upregulation of both genes was more pronounced under Pb exposure. Furthermore, the mRNA levels of several genes involved in S assimilation and the biosynthesis of GSH and phytochelatins, i.e., ATPS1, ATPS3, GSHS1, GSHS2 and PCS1, were upregulated in poplar roots with high S supply, particularly under Pb exposure. These results indicate that a high S supply can stimulate Pb accumulation and reduce its toxicity in poplars by improving S assimilation and stimulating the biosynthesis of S-containing compounds including T-SH and GSH.


Subject(s)
Lead/toxicity , Populus/drug effects , Sulfur/metabolism , Dose-Response Relationship, Drug , Lead/metabolism , Populus/growth & development , Populus/metabolism , Reactive Oxygen Species/metabolism , Sulfur/deficiency
13.
Tree Physiol ; 38(1): 66-82, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29036367

ABSTRACT

To investigate the physiological responses of poplars to amino acids as sole nitrogen (N) sources, Populus × canescens (Ait.) Smith plants were supplied with one of three nitrogen fertilizers (NH4NO3, phenylalanine (Phe) or the mixture of NH4NO3 and Phe) in sand culture. A larger root system, and decreased leaf size and CO2 assimilation rate was observed in Phe- versus NH4NO3-treated poplars. Consistently, a greater root biomass and a decreased shoot growth were detected in Phe-supplied poplars. Decreased enzymatic activities of nitrate reductase (NR), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH) and elevated activities of nitrite reductase (NiR), phenylalanine ammonia lyase (PAL), glutamine synthetase (GS) and asparagine synthase (AS) were found in Phe-treated roots. Accordingly, reduced concentrations of NH4+, NO3- and total N, and enhanced N-use efficiencies (NUEs) were detected in Phe-supplied poplars. Moreover, the transcript levels of putative Phe transporters ANT1 and ANT3 were upregulated, and the mRNA levels of NR, glutamine synthetase 2 (GS2), NADH-dependent glutamate synthase (NADH-GOGAT), GDH and asparagine synthetase 2 (ASN2) were downexpressed in Phe-treated roots and/or leaves. The 15N-labeled Phe was mainly allocated in the roots and only a small amount of 15N-Phe was translocated to poplar aerial parts. These results indicate that poplar roots can acquire Phe as an N source to support plant growth and that Phe-induced NUEs in the poplars are probably associated with NH4+ re-utilization after Phe deamination and the carbon bonus simultaneously obtained during Phe uptake.


Subject(s)
Nitrogen/metabolism , Phenylalanine/metabolism , Plant Proteins/metabolism , Plant Roots/metabolism , Populus/metabolism , Glutamate-Ammonia Ligase/metabolism , Nitrate Reductase/metabolism , Phenylalanine Ammonia-Lyase/metabolism , Plant Leaves/metabolism
14.
Tree Physiol ; 37(12): 1697-1712, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29121354

ABSTRACT

Glutathione (GSH) plays an important role in cadmium (Cd) tolerance in woody plants, but the underlying mechanisms remain largely unknown. To elucidate the physiological and transcriptional regulation mechanisms of GSH-mediated Cd tolerance in woody plants, we exposed Populus × canescens (Ait.) Smith saplings to either 0 or 75 µM Cd together with one of three external GSH levels. Glutathione treatments include buthionine sulfoximine (BSO, an inhibitor of GSH biosynthesis), no external GSH and exogenous GSH. External GSH resulted in higher Cd2+ uptake rate in the roots, greater Cd amount in poplars, lower Cd-induced H2O2 levels in the roots, and higher contents of endogenous GSH in Cd-treated roots and leaves. Furthermore, external GSH led to upregulated transcript levels of several genes including zinc/iron regulated transporter related protein 6.2 (ZIP6.2) and natural resistance-associated macrophage protein 1.3 (NRAMP1.3), which probably take part in Cd uptake, glutathione synthetase 2 (GS2) implicated in Cd detoxification, metal tolerance protein 1 (MTP1) and ATP-binding cassette transporter C3 (ABCC3) involved in Cd vacuolar accumulation in the roots, γ-glutamylcysteine synthetase (ECS) and phytochelatin synthetase family protein 1 (PCS1) involved in Cd detoxification, and oligopeptide transporter 7 (OPT7) probably implicated in Cd detoxification in the leaves of Cd-exposed P. × canescens. In contrast, BSO often displayed the opposite effects on Cd-triggered physiological and transcriptional regulation responses in poplars. These results suggest that exogenous GSH can enhance Cd accumulation and alleviate its toxicity in poplars. This is probably attributed to external-GSH-induced higher net Cd2+ influx in the roots, greater Cd accumulation in aerial parts, stronger scavenging of reactive oxygen species, and transcriptional overexpression of several genes involved in Cd uptake, detoxification and accumulation.


Subject(s)
Cadmium/metabolism , Glutathione/pharmacology , Populus/drug effects , Populus/metabolism , Gene Expression Regulation, Plant/drug effects , Oxidative Stress/drug effects , Plant Proteins/metabolism , Reactive Oxygen Species/metabolism
16.
Sci Rep ; 7: 43215, 2017 02 24.
Article in English | MEDLINE | ID: mdl-28233854

ABSTRACT

High temperature (HT) and drought are both critical factors that constrain tree growth and survival under global climate change, but it is surprising that the transcriptomic reprogramming and physiological relays involved in the response to HT and/or drought remain unknown in woody plants. Thus, Populus simonii saplings were exposed to either ambient temperature or HT combined with sufficient watering or drought. RNA-sequencing analysis showed that a large number of genes were differentially expressed in poplar roots and leaves in response to HT and/or desiccation, but only a small number of these genes were identified as overlapping heat-/drought-responsive genes that are mainly involved in RNA regulation, transport, hormone metabolism, and stress. Furthermore, the overlapping heat-/drought-responsive genes were co-expressed and formed hierarchical genetic regulatory networks under each condition compared. HT-/drought-induced transcriptomic reprogramming is linked to physiological relays in poplar roots and leaves. For instance, HT- and/or drought-induced abscisic acid accumulation and decreases in auxin and other phytohormones corresponded well with the differential expression of a few genes involved in hormone metabolism. These results suggest that overlapping heat-/drought-responsive genes will play key roles in the transcriptional and physiological reconfiguration of poplars to HT and/or drought under future climatic scenarios.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Hot Temperature , Populus/genetics , Populus/physiology , Stress, Physiological , Gene Expression Profiling , Gene Regulatory Networks , Plant Leaves/genetics , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/physiology , Populus/drug effects , Populus/radiation effects , Sequence Analysis, RNA
17.
Biotechnol Adv ; 34(6): 1131-1148, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27422434

ABSTRACT

Heavy metal (HM)-accumulating herbaceous and woody plants are employed for phytoremediation. To develop improved strategies for enhancing phytoremediation efficiency, knowledge of the microstructural, physiological and molecular responses underlying HM-accumulation is required. Here we review the progress in understanding the structural, physiological and molecular mechanisms underlying HM uptake, transport, sequestration and detoxification, as well as the regulation of these processes by signal transduction in response to HM exposure. The significance of genetic engineering for enhancing phytoremediation efficiency is also discussed. In herbaceous plants, HMs are taken up by roots and transported into the root cells via transmembrane carriers for nutritional ions. The HMs absorbed by root cells can be further translocated to the xylem vessels and unloaded into the xylem sap, thereby reaching the aerial parts of plants. HMs can be sequestered in the cell walls, vacuoles and the Golgi apparatuses. Plant roots initially perceive HM stress and trigger the signal transduction, thereby mediating changes at the molecular, physiological, and microstructural level. Signaling molecules such as phytohormones, reactive oxygen species (ROS) and nitric oxide (NO), modulate plant responses to HMs via differentially expressed genes, activation of the antioxidative system and coordinated cross talk among different signaling molecules. A number of genes participated in HM uptake, transport, sequestration and detoxification have been functionally characterized and transformed to target plants for enhancing phytoremediation efficiency. Fast growing woody plants hold an advantage over herbaceous plants for phytoremediation in terms of accumulation of high HM-amounts in their large biomass. Presumably, woody plants accumulate HMs using similar mechanisms as herbaceous counterparts, but the processes of HM accumulation and signal transduction can be more complex in woody plants.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Plants , Soil Pollutants , Cyclopentanes/metabolism , Genetic Engineering , Hydrogen Sulfide/metabolism , Metals, Heavy/analysis , Metals, Heavy/metabolism , Nitric Oxide/metabolism , Oxylipins/metabolism , Plants/chemistry , Plants/genetics , Plants/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Signal Transduction , Soil Pollutants/analysis , Soil Pollutants/metabolism
18.
Tree Physiol ; 36(1): 22-38, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26420793

ABSTRACT

Phosphorus (P) and nitrogen (N) are the two essential macronutrients for tree growth and development. To elucidate the P and N physiology of woody plants during acclimation to P and/or N starvation, we exposed saplings of the slow-growing Populus simonii Carr (Ps) and the fast-growing Populus × euramericana Dode (Pe) to complete nutrients or starvation of P, N or both elements (NP). P. × euramericana had lower P and N concentrations and greater P and N amounts due to higher biomass production, thereby resulting in greater phosphorus use efficiency/N use efficiency (PUE/NUE) compared with Ps. Compared with the roots of Ps, the roots of Pe exhibited higher enzymatic activities in terms of acid phosphatases (APs) and malate dehydrogenase (MDH), which are involved in P mobilization, and nitrate reductase (NR), glutamate synthase (GOGAT) and glutamate dehydrogenase (GDH), which participate in N assimilation. The responsiveness of the transcriptional regulation of key genes encoding transporters for phosphate, ammonium and nitrate was stronger in Pe than in Ps. These results suggest that Pe possesses a higher capacity for P/N uptake and assimilation, which promote faster growth compared with Ps. In both poplars, P or NP starvation caused significant decreases in the P concentrations and increases in PUE. Phosphorus deprivation induced the activity levels of APs, phosphoenolpyruvate carboxylase and MDH in both genotypes. Nitrogen or NP deficiency resulted in lower N concentrations, amino acid levels, NR and GOGAT activities, and higher NUE in both poplars. Thus, in Ps and Pe, the mRNA levels of PHT1;5, PHT1;9, PHT2;1, AMT2;1 and NR increased in the roots, while PHT1;9, PHO1;H1, PHO2, AMT1;1 and NRT2;1 increased in the leaves during acclimation to P, N or NP deprivation. These results suggest that both poplars suppress P/N uptake, mobilization and assimilation during acclimation to P, N or NP starvation.


Subject(s)
Nitrogen/metabolism , Phosphorus/metabolism , Populus/metabolism , Acclimatization , Genotype , Populus/genetics
19.
Physiol Plant ; 157(1): 38-53, 2016 May.
Article in English | MEDLINE | ID: mdl-26497326

ABSTRACT

To elucidate the physiological and transcriptional regulatory mechanisms that underlie the responses of poplars to high temperature (HT) and/or drought in woody plants, we exposed Populus alba × Populus tremula var. glandulosa saplings to ambient temperature (AT) or HT under 80 or 40% field capacities (FC), or no watering. HT increased the foliar total carbon (C) concentrations, and foliar δ(13) C and δ(18) O. HT triggered heat stress signaling via increasing levels of abscisic acid (ABA) and indole-3-acetic acid (IAA) in poplar roots and leaves. After perception of HT, poplars initiated osmotic adjustment by increasing foliar sucrose and root galactose levels. In agreement with the HT-induced heat stress and the changes in the levels of ABA and carbohydrates, we detected increased transcript levels of HSP18 and HSP21, as well as NCED3 in the roots and leaves, and the sugar transporter gene STP14 in the roots. Compared with AT, drought induced greater enhancement of foliar δ(13) C and δ(18) O in poplars at HT. Similarly, drought caused greater stimulation of the ABA and foliar glucose levels in poplars at HT than at AT. Correspondingly, desiccation led to greater increases in the mRNA levels of HSP18, HSP21, NCED3, STP14 and INT1 in poplar roots at HT than at AT. These results suggest that HT has detrimental effects on physiological processes and it induces the transcriptional regulation of key genes involved in heat stress responses, ABA biosynthesis and sugar transport and HT can cause greater changes in drought-induced physiological and transcriptional responses in poplar roots and leaves.


Subject(s)
Acclimatization , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Populus/physiology , Abscisic Acid/metabolism , Droughts , Indoleacetic Acids/metabolism , Plant Leaves/genetics , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/physiology , Populus/genetics , Temperature
20.
Tree Physiol ; 35(12): 1283-302, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26420789

ABSTRACT

Nitrogen (N) starvation and excess have distinct effects on N uptake and metabolism in poplars, but the global transcriptomic changes underlying morphological and physiological acclimation to altered N availability are unknown. We found that N starvation stimulated the fine root length and surface area by 54 and 49%, respectively, decreased the net photosynthetic rate by 15% and reduced the concentrations of NH4+, NO3(-) and total free amino acids in the roots and leaves of Populus simonii Carr. in comparison with normal N supply, whereas N excess had the opposite effect in most cases. Global transcriptome analysis of roots and leaves elucidated the specific molecular responses to N starvation and excess. Under N starvation and excess, gene ontology (GO) terms related to ion transport and response to auxin stimulus were enriched in roots, whereas the GO term for response to abscisic acid stimulus was overrepresented in leaves. Common GO terms for all N treatments in roots and leaves were related to development, N metabolism, response to stress and hormone stimulus. Approximately 30-40% of the differentially expressed genes formed a transcriptomic regulatory network under each condition. These results suggest that global transcriptomic reprogramming plays a key role in the morphological and physiological acclimation of poplar roots and leaves to N starvation and excess.


Subject(s)
Nitrates/metabolism , Plant Proteins/genetics , Populus/physiology , Transcriptome , Dose-Response Relationship, Drug , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Populus/genetics , Populus/growth & development , Sequence Analysis, DNA , Stress, Physiological
SELECTION OF CITATIONS
SEARCH DETAIL
...