Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 60(5): 2367-2378, 2023 May.
Article in English | MEDLINE | ID: mdl-36650421

ABSTRACT

Stress is considered as a major cause of depression. C-Jun N-terminal kinase (JNK) is a member of the stress-induced mitogen activated protein (MAP) kinase family which is often activated through phosphorylation. Clinical studies and animal experiments have found that abnormal phosphorylation/activation of JNK exists in the occurrence of various psychiatric diseases. Recently, several studies linked JNK kinase activity to depression. However, whether excessive activation of JNK activity is directly responsible for the occurrence of depression and the underlying mechanisms remain unclear. Here, we constructed a conditional transgenic mouse which is specifically expressing MKK7-JNK1 (CAJNK1) in the central nervous system. CAJNK1 mice showed activation of JNK and lead to depression-like behavior in mice. Transcriptome analysis indicates reduced expression of synaptic-associated genes in CAJNK1 mice brains. Consistently, we found abnormal dendritic spine development and PSD95 downregulation in CAJNK1 hippocampal neurons. Our studies provide compelling evidence that activation of JNK as an intrinsic factor leading to depression-like behavior in mice provides direct clues for targeting the JNK activity as a potential therapeutic strategy for depression.


Subject(s)
Depression , MAP Kinase Kinase 7 , Mice , Animals , MAP Kinase Kinase 7/genetics , MAP Kinase Kinase 7/metabolism , Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Mitogen-Activated Protein Kinase 8/metabolism , Mice, Transgenic , MAP Kinase Kinase 4/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
2.
Nutrients ; 14(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35684068

ABSTRACT

Although early life stress (ELS) can increase susceptibility to adulthood psychiatric disorders and produce a greater inflammatory response in a stressful event, targeted preventive and therapeutic drugs still remain scarce. Ganoderma lucidum triterpenoids (GLTs) can exert anti-inflammatory effects in the periphery and central nervous systems. This study employed a combined model of "childhood maternal separation + adulthood sub-stress" to explore whether GLTs may alleviate anxiety- and depression-like behaviors in male and female mice by mitigating inflammation. Male and female pups were separated from their mothers for four hours per day from postnatal day 1 (PND 1) to PND 21; starting from PND 56, GLTs were administered intraperitoneally once daily for three weeks and followed by three days of sub-stress. Results showed that maternal separation increased the anxiety- and depression-like behaviors in both male and female mice, which disappeared after the preemptive GLTs treatment (40 mg/kg) before adulthood sub-stress. Maternal separation up-regulated the pro-inflammatory markers in the periphery and brain, and activated microglia in the prefrontal cortex and hippocampus. All the abnormalities were reversed by GLTs administration, with no adverse effects on immune organ indices, liver, and renal function. Our findings suggest that GLTs can be a promising candidate in treating ELS-induced psychiatric disorders.


Subject(s)
Reishi , Triterpenes , Adult , Animals , Anxiety/drug therapy , Anxiety/etiology , Brain , Child , Depression/drug therapy , Depression/etiology , Female , Humans , Inflammation/drug therapy , Male , Maternal Deprivation , Mice , Stress, Psychological/complications , Stress, Psychological/drug therapy , Triterpenes/pharmacology
3.
Ecotoxicol Environ Saf ; 225: 112725, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34492628

ABSTRACT

Despite the wide application of cobalt nanoparticles (CoNPs), its neurotoxicity and the underlying mechanisms are not fully understood. In this study, CoNPs-induced toxic effect was examined in both C57BL/6J mice and microglial BV2 cells. CoNPs-induced brain weight loss and the reduction of Nissl bodies, assuring neural damage. Moreover, both total unphosphorylated Tau and phosphorylated Tau (pTau; T231 and S262) expressions in the hippocampus and cortex were upregulated, unveiling Tau phosphorylation. Besides, the increase in inflammation-related proteins NLRP3 and IL-1ß were found in mice brain. Corroborating that, microglial marker Iba-1 expression was also increased, suggesting microglia-involved inflammation. Among the NADPH oxidase (NOX) family proteins tested, only NOX2 was activated by CoNPs in hippocampus. Therefore, BV2 cells were employed to further investigate the role of NOX2. In BV2 cells, NOX2 expression was upregulated, corresponding to the production of ROS. Moreover, similar induction in Tau phosphorylation and inflammation-related protein expressions were observed in CoNPs-exposed BV2 cells. Treatment of apocynin, a NOX2 inhibitor, reduced ROS generation and reversed Tau phosphorylation and inflammation caused by CoNPs. Thus, CoNPs induced ROS production, Tau phosphorylation and inflammation specially via NOX2 activation.


Subject(s)
Microglia , Nanoparticles , Animals , Cobalt , Mice , Mice, Inbred C57BL , Phosphorylation
4.
J Hazard Mater ; 419: 126378, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34175703

ABSTRACT

Cobalt is a hazardous material that has harmful effects on neurotoxicity. Excessive exposure to cobalt or inactivation of the unique proline isomerase Pin1 contributes to age-dependent neurodegeneration. However, nothing is known about the role of Pin1 in cobalt-induced neurodegeneration. Here we find that out of several hazardous materials, only cobalt dose-dependently decreased Pin1 expression and alterations in its substrates, including cis and trans phosphorylated Tau in human neuronal cells, concomitant with neurotoxicity. Cobalt-induced neurotoxicity was aggravated by Pin1 genetic or chemical inhibition, but rescued by Pin1 upregulation. Furthermore, less than 4 µg/l of blood cobalt induced dose- and age-dependent Pin1 downregulation in murine brains, ensuing neurodegenerative changes. These defects were corroborated by changes in Pin1 substrates, including cis and trans phosphorylated Tau, amyloid precursor protein, ß amyloid and GSK3ß. Moreover, blood Pin1 was downregulated in human hip replacement patients with median blood cobalt level of 2.514 µg/l, which is significantly less than the safety threshold of 10 µg/l, suggesting an early role Pin1 played in neurodegenerative damages. Thus, Pin1 inactivation by cobalt contributes to age-dependent neurodegeneration, revealing that cobalt is a hazardous material triggering AD-like neurodegenerative damages.


Subject(s)
Alzheimer Disease , Alzheimer Disease/chemically induced , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Cobalt/toxicity , Humans , Mice , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Phosphorylation
5.
Environ Pollut ; 272: 116413, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33422762

ABSTRACT

Paraquat (PQ) is one of the most widely used herbicides in the world due to its excellent weed control effects. Accumulating evidence has revealed that long-term exposure to PQ can significantly increase the risk of Parkinson's disease (PD). However, the underlying molecular mechanisms are yet to be fully understood. Hence, we investigated the potential role of reactive oxygen species (ROS) and dynamin-related protein 1 (DRP1) in PQ-induced mitophagy, aiming to elaborate on possible molecular mechanisms involved in PQ-triggered neurotoxicity. Our results showed that ROS were increased, mitochondrial membrane potential was decreased at 100, 200, and 300 µM PQ concentrations, and autophagy pathways were activated at a concentration of 100 µM in neuronal cells. In addition, excessive mitophagy was observed in neurons exposed to 300 µM PQ for 24 h. Then, ROS-mediated mitochondrial fission was found to contribute to PQ-induced excessive mitophagy. Moreover, all aforementioned changes were significantly ameliorated by mdivi-1. Thus, our findings provide a novel neurotoxic mechanism and reveal the DRP1-mitochondrial fission pathway as a potential target for treatments of PQ-induced excessive mitophagy, serving as an alternative target for the prevention and treatment of Parkinson's disease. Because harmful substances are transmitted and enriched in the food chain, the toxic effect of environmental paraquat is nonnegligible, and more investigations are needed.


Subject(s)
Herbicides , Paraquat , Herbicides/toxicity , Mitochondrial Dynamics , Mitophagy , Neurons , Paraquat/toxicity , Reactive Oxygen Species
6.
Nanotoxicology ; 15(10): 1358-1379, 2021 12.
Article in English | MEDLINE | ID: mdl-35077651

ABSTRACT

Broad applications of cobalt nanoparticles (CoNPs) have raised increased concerns regarding their potential toxicity. However, the underlining mechanisms of their toxicity have yet to be characterized. Here, we demonstrated that CoNPs reduced cell viability and induced membrane leakage. CoNPs induced oxidative stress, as indicated by the generation of reactive oxygen species (ROS) secondary to the increased expression of hypoxia-induced factor 1 alpha. Moreover, CoNPs led to mitochondrial damage, including generation of mitochondrial ROS, reduction in ATP content, morphological damage and autophagy. Interestingly, exogenous mitochondria were observed between neurons and astrocytes upon CoNPs exposure. Concomitantly, tunneling nanotubes (TNTs)-like structures were observed between neurons and astrocytes upon CoNPs exposure. These structures were further verified to be TNTs as they were found to be F-actin rich and lacking tubulin. We then demonstrated that TNTs were utilized for mitochondrial transfer between neurons and astrocytes, suggesting a novel crosstalk phenomenon between these cells. Moreover, we found that the inhibition of TNTs (using actin-depolymerizing drug latrunculin B) intensified apoptosis triggered by CoNPs. Therefore, we demonstrate, for the first time, that the inhibition of intercellular mitochondrial transfer via TNTs aggravates CoNPs-induced cellular and mitochondrial toxicity in neuronal cells, implying a novel intercellular protection mechanism in response to nanoparticle exposure.


Subject(s)
Nanoparticles , Nanotubes , Cell Membrane Structures , Cobalt/toxicity , Mitochondria , Nanoparticles/toxicity , Nanotubes/toxicity
7.
Ecotoxicol Environ Saf ; 208: 111424, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33120262

ABSTRACT

Emerging evidences having suggested that particular lncRNAs have a potential effect on PD progression through provoking damage and inflammatory responses of microglia/ dopaminergic cells. In addition, paraquat can be accumulated in human body through various approaches and have an increased risk for Parkinson's disease. However, the specific role and mechanism of lncRNA related to neurotoxic in the progression of PD is unclear. In our study, a mouse PD model was established induced by the intraperitoneal injection of paraquat (5 mg/kg and 10 mg/kg) every three days (10 times). We determined differential expression of lncRNA AK039862 and its potential targeted genes Pafah1b1/Foxa1 in PD mouse model, then we used fluorescence in situ hybridization (FISH) to visualize the cellular distribution of AK039862. Short interfering RNAs (siRNAs) and overexpression plasmids were designed for knockdown or overexpression of AK039862. To simulate the coexisting dopaminergic cells and microglia cells in vitro, we applied several non-contact co-culture models, including conditioned medium and Transwell co-culture systems. Cytotoxicity of PQ was evaluated using bv2 cells with the concentrations: 30, 60 µM, and mn9d cells with the concentrations: 50, 100 µM. As a result, we depicted multiple interesting individual and interactive features of inflammatory lncRNA AK039862 involved in PQ-induced cellular functional effects. First, we detected that AK039862 contributed to the neuronal injury process in PQ-treated mice and co-localization of AK039862 with dopaminergic cells in vivo. And interestingly, we demonstrated that PQ significantly inhibited microglia and dopaminergic cells proliferation and microglia migration in vitro. Further research indicated that the PQ-induced low expression of AK039862 rescued microglia proliferation and migration inhibition via the AK039862/Pafah1b1/Foxa1 pathway. Meanwhile, AK039862 also participated in the interaction between microglia and dopaminergic cells with PQ treatment in non-contact co-culture models. In summary, we found that PQ inhibited the proliferation and migration of microglial cells, and elucidated AK039862 played a key role in PQ-induced neuroinflammatory damage through Pafah1b1/Foxa1. Finally, inflammatory AK039862 is involved in the complex communication between microglia and dopaminergic cells in the environment of PQ damage.


Subject(s)
Herbicides/toxicity , Paraquat/toxicity , RNA, Long Noncoding/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/pharmacology , Animals , Cell Proliferation , Coculture Techniques , Disease Models, Animal , Dopaminergic Neurons/metabolism , Hepatocyte Nuclear Factor 3-alpha/metabolism , Hepatocyte Nuclear Factor 3-alpha/pharmacology , In Situ Hybridization, Fluorescence , Male , Mice , Microglia/drug effects , Microtubule-Associated Proteins/metabolism , Neurotoxicity Syndromes/metabolism
8.
Toxicol Sci ; 178(1): 173-188, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32735315

ABSTRACT

Paraquat (PQ) is herbicide widely used in agricultural production. It is identified as an environmental toxicant that could lead to neurodegeneration damage. Parkinson's disease (PD) is a central nervous system degenerative disease that occurs in the elderly. Main risk factors for PD include genetic and environmental variables, but its specific mechanism is still not well understood. Emerging evidence suggests that long noncoding RNAs (lncRNAs) play an important role in PD. LncRNA NR_030777 has a full length of 2208 bp and is highly conserved among species. RNA profiling showed a significant alteration in lncRNA NR_030777 expression upon PQ-induced neurotoxicity. However, little is known on the functional relevance of lncRNA NR_030777 in the development of PQ. In this study, we discovered a vital protective role of lncRNA NR_030777 in PQ-induced neurotoxicity. The expression of NR_030777 correlates with elevated level of reactive oxygen species induced by PQ. In addition, activated expression of NR_030777 alleviates neurotoxicity by regulating the expression of Zfp326 and Copine 5. We report that lncRNA NR_030777 has a vital protective role in neurotoxicity induced by environmental toxicants such as PQ. This study could serve as an exemplary case for lncRNAs to be considered as a potential target for the prevention and treatment of PQ-induced neurodegenerative disorders such as PD.


Subject(s)
DNA-Binding Proteins/metabolism , Herbicides/toxicity , Intracellular Signaling Peptides and Proteins/metabolism , Neurotoxins/toxicity , Paraquat/toxicity , RNA, Long Noncoding , Transcription Factors/metabolism , Animals , Cell Line , Mice , Reactive Oxygen Species
9.
Toxicol Appl Pharmacol ; 369: 90-99, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30849457

ABSTRACT

Cobalt nanoparticles (CoNPs) have been widely used in industry given their physical, chemical and magnetic properties; however, CoNPs may cause neurological symptoms and diseases in human, yet their mechanisms of toxicity remain unknown. Here, we used male Wistar rats to investigate differences in the toxic effects associated with CoNPs and CoCl2. Upon exposure to CoCl2, and 96 nm or 123 nm CoNPs at the same concentration, the Co2+ content in CoCl2 group was significantly higher than that in either the CoNPs groups in brain tissues and blood, but lower in liver. Significant neural damage was observed in both hippocampus and cortex of the temporal lobe. Increase malondialdehyde (MDA) content and CASPASE 9 protein level were associated both with CoCl2 and CoNPs treatments, consistent with lipid perioxidation and apoptosis. Heme oxygenase-1 and (NF-E2) p45-related factor-2 protein levels were elevated in response to 96 nm CoNPs exposure. In PC12 cells, NRF2 downregulation led to reduced cell viability and increased apoptotic rate. In conclusion, both CoNPs and CoCl2 cause adverse neural effects, with nanoparticles showing greater neurotoxic potency. In addition, NRF2 protects neural cells from damage induced by CoCl2 and CoNPs by activating downstream antioxidant responses.


Subject(s)
Brain/drug effects , Cobalt/toxicity , Metal Nanoparticles/toxicity , Neurons/drug effects , Neurotoxicity Syndromes/etiology , Animals , Apoptosis/drug effects , Biomarkers/metabolism , Brain/metabolism , Brain/pathology , Caspase 9/metabolism , Cobalt/blood , Heme Oxygenase (Decyclizing)/metabolism , Lipid Peroxidation/drug effects , Male , Malondialdehyde/metabolism , NF-E2 Transcription Factor, p45 Subunit/metabolism , Neurons/metabolism , Neurons/pathology , Neurotoxicity Syndromes/blood , Neurotoxicity Syndromes/pathology , PC12 Cells , Rats , Rats, Wistar , Risk Assessment , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...