Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Biomech (Bristol, Avon) ; 100: 105772, 2022 12.
Article in English | MEDLINE | ID: mdl-36191511

ABSTRACT

BACKGROUND: Dysphagia is one of the common complications after stroke. Dysphagia significantly increases the probability of serious adverse consequences. The purpose of this study was to compare the characteristics of submental muscles electromyography and hyoid motion parameters between patients with dysphagia after stroke and healthy controls, and whether there is a synergistic effect between the function of the submental muscles and the movement of the hyoid. METHODS: Fifteen patients with post-stroke dysphagia and fifteen healthy adults simultaneously underwent the videofluoroscopic and surface electromyography of the submental muscles while swallowing 5 ml of concentrated liquid barium sulphate. The electromyographic signal of the submental muscles was analysed along with parameters of hyoid movement. FINDINGS: Stage transition duration and duration of surface electromyographic activity were extended significantly in post-stroke dysphagia patients(P < 0.05). Surface electromyography amplitude and hyoid movement were significantly reduced in patients (P < 0.05). There was a significant correlation between the maximum hyoid movement distance and the peak sEMG amplitude in healthy controls (r = 0.660, P = 0.014), but not in patients with dysphagia after stroke (r = 0.425, P = 0.148). INTERPRETATION: Submental muscles electromyographic signal changes in patients may be the result of uncoordinated muscle contractions and decreased muscle strength. Furthermore, the reduced hyoid movement distance may be due to impaired function of the submental muscles. In addition, the submental muscles and hyoid movement or other swallowing structures functions were impaired to varying degrees, resulting in the disappearance of the correlation between the maximum movement distance of the hyoid and the peak amplitude.


Subject(s)
Hyoid Bone , Muscles , Humans
2.
Front Microbiol ; 12: 732905, 2021.
Article in English | MEDLINE | ID: mdl-34733251

ABSTRACT

Oil tea (Camellia spp.) is endemic to the hilly regions in the subtropics. Camellia yuhsienensis is resistant to diseases such as anthracnose and root rot, while Camellia oleifera is a high-yield species but susceptible to these diseases. We hypothesize that differences in the rhizosphere microbial communities and functions will elucidate the resistance mechanisms of these species. We used high-throughput sequencing over four seasons to characterize the rhizosphere microbiome of C. oleifera (Rhizo-Sus) and C. yuhsienensis (Rhizo-Res) and of the bulk soil control (BulkS). In Rhizo-Res, bacterial richness and diversity (Shannon index) in autumn and winter were both higher than that in Rhizo-Sus. In Rhizo-Res, fungal richness in autumn and winter and diversity in summer, autumn, and winter were higher than that in Rhizo-Sus. The seasonal variations in bacterial community structure were different, while that of fungal community structure were similar between Rhizo-Res and Rhizo-Sus. Gram-positive, facultatively anaerobic, and stress-tolerant bacteria were the dominant groups in Rhizo-Sus, while Gram-negative bacteria were the dominant group in Rhizo-Res. The significant differences in bacterial and fungal functions between Rhizo-Sus and Rhizo-Res were as follows: (1) in Rhizo-Sus, there were three bacterial and four fungal groups with plant growth promoting potentials, such as Brevibacterium epidermidis and Oidiodendron maius, and one bacterium and three fungi with pathogenic potentials, such as Gryllotalpicola sp. and Cyphellophora sessilis; (2) in Rhizo-Res, there were also three bacteria and four fungal groups with plant-growth-promoting potentials (e.g., Acinetobacter lwoffii and Cenococcum geophilum) but only one phytopathogen (Schizophyllum commune). In summary, the rhizosphere microbiome of disease-resistant C. yuhsienensis is characterized by a higher richness and diversity of microbial communities, more symbiotic fungal communities, and fewer pathogens compared to the rhizosphere of high-yield but disease-susceptible C. oleifera.

3.
Microorganisms ; 8(9)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927703

ABSTRACT

Camellia yuhsienensis Hu, endemic to China, is a predominant oilseed crop, due to its high yield and pathogen resistance. Past studies have focused on the aboveground parts of C. yuhsienensis, whereas the microbial community of the rhizosphere has not been reported yet. This study is the first time to explore the influence of seasonal variation on the microbial community in the rhizosphere of C. yuhsienensis using high-throughput sequencing. The results showed that the dominant bacteria in the rhizosphere of C. yuhsienensis were Chloroflexi, Proteobacteria, Acidobacteria, Actinobacteria, and Planctomycetes, and the dominant fungi were Ascomycota, Basidiomycota, and Mucoromycota. Seasonal variation has significant effects on the abundance of the bacterial and fungal groups in the rhizosphere. A significant increase in bacterial abundance and diversity in the rhizosphere reflected the root activity of C. yuhsienensis in winter. Over the entire year, there were weak correlations between microorganisms and soil physiochemical properties in the rhizosphere. In this study, we found that the bacterial biomarkers in the rhizosphere were chemoorganotrophic Gram-negative bacteria that grow under aerobic conditions, and fungal biomarkers, such as Trichoderma, Mortierella, and Lecanicillium, exhibited protection against pathogens in the rhizosphere. In the rhizosphere of C. yuhsienensis, the dominant functions of the bacteria included nitrogen metabolism, oxidative phosphorylation, glycine, serine and threonine metabolism, glutathione metabolism, and sulfur metabolism. The dominant fungal functional groups were endophytes and ectomycorrhizal fungi of a symbiotroph trophic type. In conclusion, seasonal variation had a remarkable influence on the microbial communities and functions, which were also significantly different in the rhizosphere and non-rhizosphere of C. yuhsienensis. The rhizosphere of C. yuhsienensis provides suitable conditions with good air permeability that allows beneficial bacteria and fungi to dominate the soil microbial community, which can improve the growth and pathogen resistance of C. yuhsienensis.

SELECTION OF CITATIONS
SEARCH DETAIL