Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Rheumatol ; 71(11): 1923-1934, 2019 11.
Article in English | MEDLINE | ID: mdl-31173491

ABSTRACT

OBJECTIVE: To assess the preclinical efficacy and mechanism of action of an anti-CX3 CL1 monoclonal antibody (mAb) in systemic sclerosis (SSc). METHODS: Cultured human dermal fibroblasts were used to evaluate the direct effect of anti-CX3 CL1 mAb on fibroblasts. In addition, bleomycin-induced and growth factor-induced models of SSc were used to investigate the effect of anti-CX3 CL1 mAb on leukocyte infiltration, collagen deposition, and vascular damage in the skin. RESULTS: Anti-CX3 CL1 mAb treatment significantly inhibited Smad3 phosphorylation (P < 0.05) and expression of type I collagen and fibronectin 1 (P < 0.01) in dermal fibroblasts stimulated with transforming growth factor ß1 (TGFß1). In the bleomycin model, daily subcutaneous bleomycin injection increased serum CX3 CL1 levels (P < 0.05) and augmented lesional CX3 CL1 expression. Simultaneous administration of anti-CX3 CL1 mAb or CX3 CR1 deficiency significantly suppressed the dermal thickness, collagen content, and capillary loss caused by bleomycin (P < 0.05). Injection of bleomycin induced expression of pSmad3 and TGFß1 in the skin, which was inhibited by anti-CX3 CL1 mAb. Further, the dermal infiltration of CX3 CR1+ cells, macrophages (inflammatory and alternatively activated [M2-like] subsets), and CD3+ cells significantly decreased following anti-CX3 CL1 mAb therapy (P < 0.05), as did the enhanced skin expression of fibrogenic molecules, such as thymic stromal lymphopoietin and secreted phosphoprotein 1 (P < 0.05). However, the treatment did not significantly reduce established skin fibrosis. In the second model, simultaneous anti-mCX3 CL1 mAb therapy significantly diminished the skin fibrosis induced by serial subcutaneous injection of TGFß and connective tissue growth factor (P < 0.01). CONCLUSION: Anti-CX3 CL1 mAb therapy may be a novel approach for treating early skin fibrosis in inflammation-driven fibrotic skin disorders such as SSc.


Subject(s)
Antibodies, Monoclonal/pharmacology , CX3C Chemokine Receptor 1/immunology , Capillaries/drug effects , Chemokine CX3CL1/antagonists & inhibitors , Collagen/drug effects , Fibroblasts/drug effects , Scleroderma, Systemic/immunology , Skin/drug effects , Animals , Antibiotics, Antineoplastic/toxicity , Bleomycin/toxicity , Capillaries/pathology , Chemokine CX3CL1/immunology , Collagen/metabolism , Disease Models, Animal , Disease Progression , Fibroblasts/pathology , Fibrosis/chemically induced , Humans , In Vitro Techniques , Inflammation , Mice , Scleroderma, Systemic/pathology , Signal Transduction , Skin/immunology , Skin/pathology , Smad3 Protein/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta3/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...