Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Heart J Digit Health ; 5(3): 219-228, 2024 May.
Article in English | MEDLINE | ID: mdl-38774374

ABSTRACT

Aims: Permanent pacemaker implantation and left bundle branch block are common complications after transcatheter aortic valve replacement (TAVR) and are associated with impaired prognosis. This study aimed to develop an artificial intelligence (AI) model for predicting conduction disturbances after TAVR using pre-procedural 12-lead electrocardiogram (ECG) images. Methods and results: We collected pre-procedural 12-lead ECGs of patients who underwent TAVR at West China Hospital between March 2016 and March 2022. A hold-out testing set comprising 20% of the sample was randomly selected. We developed an AI model using a convolutional neural network, trained it using five-fold cross-validation and tested it on the hold-out testing cohort. We also developed and validated an enhanced model that included additional clinical features. After applying exclusion criteria, we included 1354 ECGs of 718 patients in the study. The AI model predicted conduction disturbances in the hold-out testing cohort with an area under the curve (AUC) of 0.764, accuracy of 0.743, F1 score of 0.752, sensitivity of 0.876, and specificity of 0.624, based solely on pre-procedural ECG images. The performance was better than the Emory score (AUC = 0.704), as well as the logistic (AUC = 0.574) and XGBoost (AUC = 0.520) models built with previously identified high-risk ECG patterns. After adding clinical features, there was an increase in the overall performance with an AUC of 0.779, accuracy of 0.774, F1 score of 0.776, sensitivity of 0.794, and specificity of 0.752. Conclusion: Artificial intelligence-enhanced ECGs may offer better predictive value than traditionally defined high-risk ECG patterns.

2.
Clin Epidemiol ; 14: 9-20, 2022.
Article in English | MEDLINE | ID: mdl-35046728

ABSTRACT

PURPOSE: Late major bleeding is one of the main complications after transcatheter aortic valve replacement (TAVR). We aimed to develop a risk prediction model based on deep learning to predict major or life-threatening bleeding complications (MLBCs) after TAVR. PATIENTS AND METHODS: This was a retrospective study including TAVR patients from West China Hospital of Sichuan University Transcatheter Aortic Valve Replacement Registry (ChiCTR2000033419) between April 17, 2012 and May 27, 2020. A deep learning-based model named BLeNet was developed with 56 features covering baseline, procedural, and post-procedural characteristics. The model was validated with the bootstrap method and evaluated using Harrell's concordance index (c-index), receiver operating characteristics (ROC) curve, calibration curve, and Kaplan-Meier estimate. Captum interpretation library was applied to identify feature importance. The BLeNet model was compared with the traditional Cox proportional hazard (Cox-PH) model and the random survival forest model in the metrics mentioned above. RESULTS: The BLeNet model outperformed the Cox-PH and random survival forest models significantly in discrimination [optimism-corrected c-index of BLeNet vs Cox-PH vs random survival forest: 0.81 (95% CI: 0.79-0.92) vs 0.72 (95% CI: 0.63-0.77) vs 0.70 (95% CI: 0.61-0.74)] and calibration (integrated calibration index of BLeNet vs Cox-PH vs random survival forest: 0.007 vs 0.015 vs 0.019). In Kaplan-Meier analysis, BLeNet model had great performance in stratifying high- and low-bleeding risk patients (p < 0.0001). CONCLUSION: Deep learning is a feasible way to build prediction models concerning TAVR prognosis. A dedicated bleeding risk prediction model was developed for TAVR patients to facilitate well-informed clinical decisions.

SELECTION OF CITATIONS
SEARCH DETAIL