Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Open Forum Infect Dis ; 10(7): ofad349, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37520415

ABSTRACT

Background: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination reduces the risk and severity of coronavirus disease 2019 (COVID-19), several variables may impact the humoral response among patients undergoing hematopoietic stem cell transplantation (HSCT). Methods: A retrospective chart review was conducted among SARS-CoV-2-vaccinated HSCT recipients between 2020 and 2022 at a single center in Boston, Massachusetts. Patients age ≥18 years who received doses of Pfizer, Moderna, or J&J vaccines were included. Anti-spike (S) immunoglobulin G (IgG) titer levels were measured using the Roche assay. Responders (≥0.8 U/mL) and nonresponders (<0.8 U/mL) were categorized and analyzed. Multivariable linear and logistic regression were used to estimate the correlation coefficient and odds ratio of response magnitude and status. Results: Of 152 HSCT recipients, 141 (92.8%) were responders, with a median (interquartile range [IQR]) anti-S IgG titer of 2500 (107.9-2500) U/mL at a median (IQR) of 80.5 (36-153.5) days from last dose, regardless of the number of doses received. Higher quantitative titers were associated with receipt of more vaccine doses (coeff, 205.79; 95% CI, 30.10 to 381.47; P = .022), being female (coeff, 343.5; 95% CI, -682.6 to -4.4; P = .047), being younger (<65 years; coeff, 365.2; 95% CI, -711.3 to 19.1; P = .039), and not being on anti-CD20 therapy (coeff, -1163.7; 95% CI, -1717.7 to -609.7; P = .001). Being male (odds ratio [OR], 0.11; 95% CI, 0.01 to 0.93; P = .04) and being on anti-CD20 therapy (OR, 0.16; 95% CI, 0.03 to 0.70; P = .016) were associated with nonresponse. Conclusions: Overall, most HSCT recipients had high SARS-CoV-2 antibody responses. More vaccine doses improved the magnitude of immune responses. Anti-S IgG monitoring may be useful for identifying attenuated vaccine-induced responses.

2.
Discoveries (Craiova) ; 9(3): e136, 2021.
Article in English | MEDLINE | ID: mdl-34816004

ABSTRACT

BACKGROUND: Apolipoprotein (apo) E isoforms have strong correlations with metabolic and cardiovascular diseases. However, it is not clear if apoE has a role in development of non-ischemic cardiomyopathy. Our study aims to analyze the involvement of apoE in non-ischemic cardiomyopathy. METHODS AND RESULTS: Serial echo-cardiographic measurements were performed in old wildtype and apoE deficient (apoE-/-) mice. Morphological and functional cardiac parameters were in normal range in both groups at the age of 12 month. At the age of 18 months, both groups had shown ventricular dilation and increased heart rates. However, the apoE-/- mice presented signs of diastolic dysfunction by hypertrophic changes in left ventricle, due probably to arterial hypertension. The right ventricle was not affected by age or genotype.  CONCLUSION: Even in the absence of high fat diet, apoE deficiency in mice induces mild changes in the cardiac function of the left ventricle during aging, by developing diastolic dysfunction, which leads to heart failure with preserved ejection fraction. However, further studies are necessary to conclude over the role of apoE in cardiac physiology and its involvement in development of heart failure.

3.
Aging (Albany NY) ; 13(12): 15875-15897, 2021 06 22.
Article in English | MEDLINE | ID: mdl-34156971

ABSTRACT

Aging determines a multilevel functional decline and increases the risk for cardiovascular pathologies. MicroRNAs are recognized as fine tuners of all cellular functions, being involved in various cardiac diseases. The heart is one of the most affected organs in aged individuals, however little is known about the extent and robustness to which miRNA profiles are modulated in cardiac cells during aging. This paper provides a comprehensive characterization of the aging-associated miRNA profile in the murine cardiac fibroblasts, which are increasingly recognized for their active involvement in the cardiac physiology and pathology. Next-generation sequencing of cardiac fibroblasts isolated from young and old mice revealed that an important fraction of the miRNAs generated by the Meg3-Mirg locus was downregulated during aging. To address the specificity of this repression, four miRNAs selected as representative for this locus were further assessed in other cells and organs isolated from aged mice. The results suggested that the repression of miRNAs generated by the Meg3-Mirg locus was a general feature of aging in multiple organs. Bioinformatic analysis of the predicted target genes identified Integrin Beta-2 as an aged-upregulated gene, which was thereafter confirmed in multiple mouse organs. In conclusion, our study provides new data concerning the mechanisms of natural aging and highlights the robustness of the miRNA modulation during this process.


Subject(s)
Aging/genetics , Down-Regulation/genetics , Genetic Loci , MicroRNAs/genetics , Animals , Fibroblasts/metabolism , Gene Expression Profiling , Genome , High-Throughput Nucleotide Sequencing , Mice, Inbred C57BL , Multigene Family , Myocardium/cytology , Myocytes, Cardiac/metabolism , Organ Specificity/genetics , Up-Regulation/genetics
4.
Front Cardiovasc Med ; 8: 810241, 2021.
Article in English | MEDLINE | ID: mdl-35118144

ABSTRACT

Deregulation of microRNA (miRNA) profile has been reportedly linked to the aging process, which is a dominant risk factor for many pathologies. Among the miRNAs with documented roles in aging-related cardiac diseases, miR-18a, -21a, -22, and -29a were mainly associated with hypertrophy and/or fibrosis; however, their relationship to aging was not fully addressed before. The purpose of this paper was to evaluate the variations in the expression levels of these miRNAs in the aging process. To this aim, multiple organs were harvested from young (2-3-months-old), old (16-18-months-old), and very old (24-25-months-old) mice, and the abundance of the miRNAs was evaluated by quantitative real-time (RT)-PCR. Our studies demonstrated that miR-21a, miR-22, and miR-29a were upregulated in the aged heart. Among them, miR-29a was highly expressed in many other organs, i.e., the brain, the skeletal muscle, the pancreas, and the kidney, and its expression was further upregulated during the natural aging process. Western blot, immunofluorescence, and xCELLigence analyses concurrently indicated that overexpression of miR-29a in the muscle cells decreased the collagen levels as well as cell migration and proliferation. Computational prediction analysis and overexpression studies identified SERPINH1, a specific chaperone of procollagens, as a potential miR-29a target. Corroborating to this, significantly downregulated SERPINH1 levels were found in the skeletal muscle, the heart, the brain, the kidney, and the pancreas harvested from very old animals, thereby indicating the role of the miR-29a-SERPINH1 axis in the aging process. In vitro analysis of miR-29a effects on fibroblast and cardiac muscle cells pointed toward a protective role of miR-29a on aging-related fibrosis, by reducing cell migration and proliferation. In conclusion, our study indicates an adaptive increase of miR-29 in the natural aging process and suggests its role as a transcriptional repressor of SERPINH1, with a potential therapeutic value against adverse matrix remodeling and aging-associated tissue fibrosis.

5.
J Cell Mol Med ; 24(18): 10889-10897, 2020 09.
Article in English | MEDLINE | ID: mdl-32785979

ABSTRACT

Subcutaneous transplantation of mesenchymal stromal cells (MSC) emerged as an alternative to intravenous administration because it avoids the pulmonary embolism and prolongs post-transplantation lifetime. The goal of this study was to investigate the mechanisms by which these cells could affect remote organs. To this aim, murine bone marrow-derived MSC were subcutaneously transplanted in different anatomical regions and the survival and behaviour have been followed. The results showed that upon subcutaneous transplantation in mice, MSC formed multicellular aggregates and did not migrate significantly from the site of injection. Our data suggest an important role of hypoxia-inducible signalling pathways in stimulating local angiogenesis and the ensuing modulation of the kinetics of circulating cytokines with putative protective effects at distant sites. These data expand the current understanding of cell behaviour after subcutaneous transplantation and contribute to the development of a non-invasive cell-based therapy for distant organ protection.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/physiology , Subcutaneous Tissue/physiology , Adipose Tissue, Brown , Adipose Tissue, White , Animals , Cell Aggregation , Cell Hypoxia , Cells, Cultured , Cellular Microenvironment , Cytokines/blood , Graft Survival , Inflammation , Male , Mice , Mice, Inbred C57BL , Neovascularization, Physiologic , Organ Specificity , Specific Pathogen-Free Organisms , Subcutaneous Fat , Subcutaneous Tissue/blood supply , Transplantation, Heterotopic
6.
Biotechnol Appl Biochem ; 66(4): 643-653, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31087689

ABSTRACT

Tracking of stem cells after transplantation is effectively performed in vivo with imaging systems, assuming the cells are adequately labeled to facilitate their recognition. This study aimed to optimize a protocol for fluorescent labeling of mesenchymal stromal cells (MSCs) in vitro, by using a third-generation lentiviral system. Basically, 293T cells are seeded in high-glucose Dulbecco's modified Eagle medium with 10% FBS one day before transfection. Transfection is done for 24 h using a mix of transfer, packaging, regulatory, and envelope plasmids, in molar ratio of 4:2:1:1, respectively. After transfection, the cells are further cultured for two days. During this period, the viral medium is harvested two times, at 24-h intervals, with the first round being stored at 4°C until the second round is completed. The pooled viral medium is frozen in single-use aliquots. MSCs are transduced with 25 multiplicity of infection (MOI) and one day later the cells are passaged at standard seeding density and further grown for three days, when the fluorescence reach the maximum level. Our protocol provides particular experimental details for permanent MSC labeling that makes the procedure highly effective for therapeutic purposes, without affecting the functional properties of stem cells.


Subject(s)
Lentivirus/isolation & purification , Mesenchymal Stem Cells/virology , Animals , HEK293 Cells , Humans , Male , Mesenchymal Stem Cell Transplantation , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...