Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 13(6)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38927217

ABSTRACT

Antimicrobial resistance represents an alarming public health problem; its importance is related to the significant clinical implications (increased morbidity, mortality, disease duration, development of comorbidities, and epidemics), as well as its economic effects on the healthcare sector. In fact, therapeutic options are severely limited by the advent and spread of germs resistant to many antibiotics. The situation worldwide is worrying, especially in light of the prevalence of Gram-negative bacteria-Klebsiella pneumoniae and Acinetobacter baumannii-which are frequently isolated in hospital environments and, more specifically, in intensive care units. The problem is compounded by the ineffective treatment of infections by patients who often self-prescribe therapy. Resistant bacteria also show resistance to the latest generation antibiotics, such as carbapenems. In fact, superbacteria, grouped under the acronym extended-spectrum betalactamase (ESBL), are becoming common. Antibiotic resistance is also found in the livestock sector, with serious repercussions on animal production. In general, this phenomenon affects all members of the biosphere and can only be addressed by adopting a holistic "One Health" approach. In this literature overview, a stock is taken of what has been learned about antibiotic resistance, and suggestions are proposed to stem its advance.

2.
Pathogens ; 13(6)2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38921791

ABSTRACT

Anthelmintic resistance in small ruminants is a serious worldwide problem. To reduce their spread, it is essential to know the prevalence of helminths on farms and the control practices adopted. As these studies in the Calabria region of southern Italy are fragmentary and outdated, a study on the prevalence of helminths in small ruminant holdings in this area has been conducted. The measures implemented to control helminths were also evaluated through questionnaires administered to farmers. In particular, on 90 farms (45 sheep and 45 goats), 1800 faecal samples from 900 sheep and 900 goats were collected in the spring. Using the FLOTAC dual technique, parasitological examinations demonstrated the presence of gastrointestinal nematodes in 100% of sheep and goat farms, followed by Nematodirus spp. (84.44% sheep and 48.89% goats), Moniezia spp. (73.33% sheep and 35.56% goats), Trichuris ovis (48.89% sheep and 42.22% goats), lungworms (28.89% sheep and 42.22% goats), Strongyloides papillosus (40% sheep and 26.67% goats), Dicrocoelium dendriticum (13.33% sheep and 26.67% goats), Calicophoron daubneyi (6.67% sheep and 31.11% goats), Fasciola hepatica (6.67% sheep and 4.44% goats), and Skrjabinema ovis (4.44% sheep and goats). The questionnaires showed that 82% and 85% of the farmers had applied pasture rotation, and that 93.3% and 86.6% had used anthelmintics in the previous year for sheep and goats, respectively. Only 24.4% of sheep farmers and 11.3% of goat farmers had carried out parasitological tests prior to treatments. The most used classes of anthelmintics were macrocyclic lactones and benzimidazoles, and only in 21.6% and 15.6%, for sheep and goats, respectively, was drug rotation carried out. These results denote that helminths represent a health problem for small ruminants and highlight a lack of knowledge of parasite control strategies among farmers. In these conditions, anthelmintic resistance phenomena could develop over time. Therefore, it is necessary to implement all possible strategies for the control of helminths, and to prevent the spread of anthelmintic resistance phenomena on farms in southern Italy.

3.
Pharmaceuticals (Basel) ; 17(5)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794216

ABSTRACT

Beekeeping provides products with nutraceutical and pharmaceutical characteristics. These products are characterized by abundance of bioactive compounds. For different reasons, honey, royal jelly, propolis, venom, and pollen are beneficial to humans and animals and could be used as therapeutics. The pharmacological action of these products is related to many of their constituents. The main bioactive components of honey include oligosaccharides, methylglyoxal, royal jelly proteins (MRJPs), and phenolics compounds. Royal jelly contains jelleins, royalisin peptides, MRJPs, and derivatives of hydroxy-decenoic acid, particularly 10-hydroxy-2-decenoic acid (10-HDA), which possess antibacterial, anti-inflammatory, immunomodulatory, neuromodulatory, metabolic syndrome-preventing, and anti-aging properties. Propolis has a plethora of activities that are referable to compounds such as caffeic acid phenethyl ester. Peptides found in bee venom include phospholipase A2, apamin, and melittin. In addition to being vitamin-rich, bee pollen also includes unsaturated fatty acids, sterols, and phenolics compounds that express antiatherosclerotic, antidiabetic, and anti-inflammatory properties. Therefore, the constituents of hive products are particular and different. All of these constituents have been investigated for their properties in numerous research studies. This review aims to provide a thorough screening of the bioactive chemicals found in honeybee products and their beneficial biological effects. The manuscript may provide impetus to the branch of unconventional medicine that goes by the name of apitherapy.

4.
Animals (Basel) ; 14(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38539949

ABSTRACT

Nowadays, old-generation pesticides are released into ecosystems alongside new formulations, giving rise to pharmacological interactions (additive, synergistic, and antagonistic effects). The aim of this study was to evaluate the impact that simultaneous exposure to DMT and FLU doses has on bee health. Groups of twenty honeybees were housed in cages to compose six macro-groups. One group consisted of experimental replicates treated orally with a toxic dose of deltamenthrin (DMT 21.6 mg/L); two other groups were subjected to the oral administration of two toxic doses of flupyradifurone (FLU 50 mg/L and FLU 100 mg/L); and two other groups were intoxicated with a combination of the two pesticides (DMT 21.6 + FLU 50 and DMT 21.6 + FLU 100). The consequences of the pesticides' interactions were highlighted by measuring and comparing data on survival, food consumption, and abnormal behavior. Generally speaking, antagonism between the two pesticides has been demonstrated. The bees were able to survive for up to three days at the lowest dosage of FLU (50 mg/L), with 46% of the subjects still alive; however, the maximum dose (100 mg/L) caused all treated animals to die as early as the second day. When DMT and FLU 50 were administered together, the group that received DMT alone had a lower survival rate. When comparing the survival rates produced by the DMT and FLU 50 combination to those of the group receiving FLU 50 alone, the same was clearly visible. While there was no statistically significant improvement observed when the survival indices of the DMT and FLU 100 combination were compared to those of the group intoxicated with DMT alone, an improvement in survival indices was observed when these were compared with the group intoxicated with FLU 100 alone.

5.
Animals (Basel) ; 14(4)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38396576

ABSTRACT

Flupyradifurone (FLU) is a butenolide insecticide that has come onto the market relatively recently. It is used in agriculture to control aphids, psyllids, and whiteflies. Toxicity studies have decreed its low toxicity to honeybees. However, recent research has challenged these claims; oral exposure to the pesticide can lead to behavioral abnormalities and in the worst cases, lethal phenomena. Compounds with antioxidant activity, such as flavonoids and polyphenols, have been shown to protect against the toxic effects of pesticides. The aim of this research was to evaluate the possible protective effect of the bergamot polyphenolic fraction (BPF) against behavioral abnormalities and lethality induced by toxic doses of FLU orally administered to honeybees under laboratory conditions. Honeybees were assigned to experimental groups in which two toxic doses of FLU, 50 mg/L and 100 mg/L were administered. In other replicates, three doses (1, 2 and 5 mg/kg) of the bergamot polyphenolic fraction (BPF) were added to the above toxic doses. In the experimental groups intoxicated with FLU at the highest dose tested, all caged subjects (20 individuals) died within the second day of administration. The survival probability of the groups to which the BPF was added was compared to that of the groups to which only the toxic doses of FLU were administered. The mortality rate in the BPF groups was statistically lower (p < 0.05) than in the intoxicated groups; in addition, a lower percentage of individuals exhibited behavioral abnormalities. According to this research, the ingestion of the BPF attenuates the harmful effects of FLU. Further studies are needed before proposing BPF incorporation into the honeybees' diet, but there already seem to be beneficial effects associated with its intake.

6.
Front Vet Sci ; 11: 1347151, 2024.
Article in English | MEDLINE | ID: mdl-38384955

ABSTRACT

Anthelmintic drug resistance has proliferated across Europe in sheep gastrointestinal nematodes (GINs). Sheep welfare and health are adversely impacted by these phenomena, which also have an impact on productivity. Finding alternatives for controlling GINs in sheep is thus of utmost importance. In this study, the anthelmintic effectiveness (AE) of a Calabrian ethnoveterinary aqueous macerate based on Punica granatum (whole fruits) was assessed in Comisana pregnant sheep. Furthermore, an examination, both qualitative and quantitative, was conducted on milk. Forty-five sheep were selected for the investigation. The sheep were divided by age, weight, physiological state (pluripara at 20 days before parturition), and eggs per gram of feces (EPG) into three homogeneous groups of 15 animals each: PG received a single oral dosage of P. granatum macerate at a rate of 50 mL per sheep; AG, treated with albendazole, was administered orally at 3.75 mg/kg/bw; and CG received no treatment. Timelines were as follows: D0, treatments, group assignment, fecal sampling, and AE assessment; D7, D14, D21, fecal sampling, and AE evaluation. The FLOTAC technique was used to evaluate the individual GIN fecal egg count (FEC) using a sodium chloride flotation solution (specific gravity = 1.20) and 100 × (1-[T2/C2]) as the formula for evaluating FEC reduction. Following the lambs' weaning, milk was collected on the following days (DL) in order to quantify production: DL35, DL42, DL49, DL56, DL63, DL70, DL77, and DL84. The amount of milk produced by every animal was measured and reported in milliliters (ml) for quantitative evaluations. Using MilkoScan TM fT + foss electric, Denmark, the quality of the milk (casein, lactose, protein concentration, and fat, expressed as a percentage) was assessed. The macerate demonstrated a considerable AE (51.8%). Moreover, its use has resulted in higher milk production rates quantitatively (15.5%) and qualitatively (5.12% protein, 4.12% casein, 4.21% lactose, and 8.18% fat). The study showed that green veterinary pharmacology could be the easiest future approach to counteracting anthelmintic resistance in sheep husbandry.

7.
Antibiotics (Basel) ; 13(2)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38391549

ABSTRACT

Antimicrobial resistance is an increasingly widespread phenomenon that is of particular concern because of the possible consequences in the years to come. The dynamics leading to the resistance of microbial strains are diverse, but certainly include the incorrect use of veterinary drugs both in terms of dosage and timing of administration. Moreover, the drug is often administered in the absence of a diagnosis. Many active ingredients in pharmaceutical formulations are, therefore, losing their efficacy. In this situation, it is imperative to seek alternative treatment solutions. Essential oils are mixtures of compounds with different pharmacological properties. They have been shown to possess the antibacterial, anti-parasitic, antiviral, and regulatory properties of numerous metabolic processes. The abundance of molecules they contain makes it difficult for treated microbial species to develop pharmacological resistance. Given their natural origin, they are environmentally friendly and show little or no toxicity to higher animals. There are several published studies on the use of essential oils as antimicrobials, but the present literature has not been adequately summarized in a manuscript. This review aims to shed light on the results achieved by the scientific community regarding the use of essential oils to treat the main agents of bacterial infection of veterinary interest in livestock. The Google Scholar, PubMed, SciELO, and SCOPUS databases were used for the search and selection of studies. The manuscript aims to lay the foundations for a new strategy of veterinary drug use that is more environmentally friendly and less prone to the emergence of drug resistance phenomena.

8.
Vet Sci ; 10(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38133253

ABSTRACT

The most significant ectoparasitic mite of honeybees, Varroa destructor, has a detrimental effect on bee health and honey output. The principal strategy used by the control programs is the application of synthetic acaricides. All of this has resulted in drug resistance, which is now a major worry for beekeeping. As a result, research on alternate products and techniques for mite management is now required. The aim of this study was to determine whether essential oils (EOs) extracted from botanical species of Lamiacae, typical of the Calabria region of Southern Italy, could reduce the population of the mite V. destructor. Among the best-known genera of the Lamiaceae family are oregano, rosemary and thyme, whose EOs were employed in this study. By steam distillation, the EOs were extracted from Origanum vulgare subsp. viridulum (Martrin-Donos) Nyman, Thymus capitatus Hoffmanns. and Link, Thymus longicaulis C.Presl and Salvia rosmarinus Schleid. plant species harvested directly on the Calabrian territory in their balsamic time. Each EO went to the test in vitro (contact toxicity) against V. destructor. Fifty adult female mites, five for each EO and the positive and negative control, were used in each experimental replicate. The positive controls comprised five individuals treated to Amitraz dilute in acetone, and the negative controls included five individuals exposed to acetone alone. To create the working solution to be tested (50 µL/tube), the EOs were diluted (0.5 mg/mL, 1 mg/mL, 2 mg/mL and 4 mg/mL) in HPLC-grade acetone. After 1 h of exposure, mite mortality was manually assessed. Origanum vulgare subsp. viridulum, Thymus capitatus and Thymus longicaulis were the EOs with the highest levels of efficiency at 2 mg/mL, neutralizing (dead + inactivated), 94%, 92% and 94% of parasites, respectively. Salvia rosmarinus EO gave a lower efficacy, resulting in a percentage of 38%. Interestingly, no adverse effects were highlighted in toxicity tests on honeybees. These results show that these OEs of the Lamiaceae family have antiparasitic action on V. destructor. Therefore, they could be used, individually or combined, to exploit the synergistic effect for a more sustainable control of this parasite mite in honeybee farms.

9.
Pathogens ; 12(10)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37887776

ABSTRACT

The most important pollinator for agricultural crops is the Western honeybee (Apis mellifera). During the winter and summer seasons, diseases and stresses of various kinds endanger honeybee numbers and production, resulting in expenses for beekeepers and detrimental effects on agriculture and ecosystems. Researchers are continually in search of therapies for honeybees using the resources of microbiology, molecular biology, and chemistry to combat diseases and improve the overall health of these important pollinating insects. Among the most investigated and most promising solutions are medicinal plants and their derivatives. The health of animals and their ability to fight disease can be supported by natural products (NPs) derived from living organisms such as plants and microbes. NPs contain substances that can reduce the effects of diseases by promoting immunity or directly suppressing pathogens, and parasites. This literature review summarises the advances that the scientific community has achieved over the years regarding veterinary treatments in beekeeping through the use of NPs. Their impact on the prevention and control of honeybee diseases is investigated both in trials that have been conducted in the laboratory and field studies.

10.
Plants (Basel) ; 12(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37765470

ABSTRACT

Salvia rosmarinus Spenn. is a native Mediterranean shrub belonging to the Lamiaceae family and is well-known as a flavoring and spicing agent. In addition to its classical use, it has drawn attention because its biological activities, due particularly to the presence of polyphenols, including carnosic acid and rosmarinic acid, and phenolic diterpenes as carnosol. In this study, the aerial part of rosemary was extracted with a hydroalcoholic solution through maceration, followed by ultrasound sonication, to obtain a terpenoids-rich Salvia rosmarinus extract (TRSrE) and a polyphenols-rich Salvia rosmarinus extract (PRSrE). After phytochemical characterization, both extracts were investigated for their antioxidant activity through a classical assay and with electron paramagnetic resonance (EPR) for their DPPH and hydroxyl radicals scavenging. Finally, their potential beneficial effects to reduce lipid accumulation in an in vitro model of NAFLD were evaluated.

11.
Microorganisms ; 11(5)2023 May 06.
Article in English | MEDLINE | ID: mdl-37317203

ABSTRACT

The majority of honeybee farms in industrialized countries currently base their Varroa destructor control programs on the use of acaricides in conjunction with other management practices. However, the outcomes of these practices are often misunderstood and have only been studied to a limited extent. Better yields are guaranteed by having hives with low infection levels in the spring. Therefore, it is crucial to understand which beekeeping practices can result in increased control effectiveness. This study aimed to analyze the potential effects of environmental factors and beekeeping practices on the dynamics of V. destructor population. Experimental evidence was obtained by interpolating percentage infestation data from diagnoses conducted on several apiaries in the Calabria region (Southern Italy) with data acquired from a questionnaire on pest control strategies. Data on climatic temperature during the different study periods were also taken into account. The study was conducted over two years and involved 84 Apis mellifera farms. For each apiary, the diagnosis of infestation was made on a minimum of 10 hives. In total, 840 samples of adult honeybees were analyzed in the field to determine the level of infestation. In 2020, 54.7% of the inspected apiaries tested positive for V. destructor, and in 2021, 50% tested positive, according to a study of the field test findings (taking into account a threshold of 3% in July). A significant effect of the number of treatments on parasite prevalence was found. The results showed a significant reduction in the infestation rate in apiaries that received more than two treatments each year. Furthermore, it was shown that management practices, such as drone brood removal and frequent queen replacement, have a statistically significant impact on the infestation rate. The analysis of the questionnaires revealed some critical issues. In particular, only 50% of the interviewed beekeepers diagnosed infestation on samples of adult bees, and only 69% practiced drug rotation. In conclusion, it is only possible to maintain the infestation rate at an acceptable threshold by implementing integrated pest management (IPM) programs and using good beekeeping practices (GBPs).

12.
Vet Sci ; 10(5)2023 Apr 23.
Article in English | MEDLINE | ID: mdl-37235392

ABSTRACT

The Varroa destructor parasite is the main obstacle to the survival of honey bee colonies. Pest control mainly involves the use of synthetic drugs which, used with the right criteria and in rotation, are able to ensure that infestation levels are kept below the damage threshold. Although these drugs are easy to use and quick to apply, they have numerous disadvantages. Their prolonged use has led to the emergence of pharmacological resistance in treated parasite populations; furthermore, the active ingredients and/or their metabolites accumulate in the beehive products with the possibility of risk for the end consumer. Moreover, the possibility of subacute and chronic toxicity phenomena for adult honeybees and their larval forms must be considered. In this scenario, eco-friendly products derived from plant species have aroused great interest over the years. In recent decades, several studies have been carried out on the acaricidal efficacy of plant essential oils (EOs). Despite the swarming of laboratory and field studies, however, few EO products have come onto the market. Laboratory studies have often yielded different results even for the same plant species. The reason for this discrepancy lies in the various study techniques employed as well as in the variability of the chemical compositions of plants. The purpose of this review is to take stock of the research on the use of EOs to control the V. destructor parasite. It begins with an extensive discussion of the characteristics, properties, and mechanisms of action of EOs, and then examines the laboratory and field tests carried out. Finally, an attempt is made to standardize the results and open up new lines of study in future.

13.
Pharmaceuticals (Basel) ; 16(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37242501

ABSTRACT

Stilbenoids, a group of phytoalexin polyphenols produced by plants as a defence mechanism in response to stress conditions, are known for their anti-inflammatory potential. Pinosylvin, a naturally occurring molecule traditionally found in pinus trees, was here identified in Pinus nigra subsp. laricio var. calabrica from Southern Italy through HPLC analysis. Both this molecule and its well-known analogue resveratrol, the most famous wine polyphenol, were compared for their in vitro potential anti-inflammatory activity. Pinosylvin significantly inhibited the release of pro-inflammatory cytokines (TNF-α and IL-6) and NO mediator in LPS-stimulated RAW 264.7 cells. Moreover, its ability to inhibit the JAK/STAT signaling pathway was assessed: Western blot analyses showed a downregulation of both phosphorylated JAK2 and STAT3 proteins. Finally, in order to verify whether this biological activity could be attributed to a direct interaction of pinosylvin with JAK2, a molecular docking study was performed, confirming the capability of pinosylvin to bind the active site of the protein.

14.
Antioxidants (Basel) ; 12(2)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36829943

ABSTRACT

Interesting photobiological properties have been demonstrated for some Cachrys species, including C. libanotis L., C. sicula L., and C. pungens Jan. The present study was designed to assess the photocytotoxic activity of Prangos ferulacea Lindl. (synonym of C. ferulacea (L.) Calest.). This plant was previously considered a Cachrys species but, at present, it is part of the Prangos genus. P. ferulacea is an orophilous plant present in the eastern Mediterranean and in western Asia. Three different extraction techniques were utilized. Obtained extracts were compared both for their phytochemical content and for their photobiological properties on human melanoma cells irradiated with UVA light. The apoptotic responses, together with the antioxidant activity, were also assessed. P. ferulacea extracts were able to affect cell viability in a concentration-dependent manner, with the sample obtained through supercritical CO2 extraction showing the highest activity (IC50 = 4.91 µg/mL). This research points out the interesting content in the photoactive compounds of this species, namely furanocoumarins, and could provide a starting point for further studies aimed at finding new photosensitizing agents useful in cancer photochemotherapy.

15.
Vet Sci ; 10(2)2023 Feb 04.
Article in English | MEDLINE | ID: mdl-36851423

ABSTRACT

Apitherapy is a branch of alternative medicine that consists of the treatment of diseases through products collected, processed, and secreted by bees, specifically pollen, propolis, honey, royal jelly, and bee venom. In traditional medicine, the virtues of honey and propolis have been well-known for centuries. The same, however, cannot be said for venom. The use of bee venom is particularly relevant for many therapeutic aspects. In recent decades, scientific studies have confirmed and enabled us to understand its properties. Bee venom has anti-inflammatory, antioxidant, central nervous system inhibiting, radioprotective, antibacterial, antiviral, and antifungal properties, among others. Numerous studies have often been summarised in reviews of the scientific literature that have focused on the results obtained with mouse models and their subsequent transposition to the human patient. In contrast, few reviews of scientific work on the use of bee venom in veterinary medicine exist. This review aims to take stock of the research achievements in this particular discipline, with a view to a recapitulation and stabilisation in the different research fields.

16.
Animals (Basel) ; 14(1)2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38200800

ABSTRACT

Varroa destructor is currently considered the parasite that causes the greatest damage and economic losses to honeybee farms. Its presence is often associated with that of viral and bacterial pathogens, which ultimately leads to colony collapse. Careful control of the parasitic load is therefore necessary to avoid the onset of these events. Although chemical treatments are often in easily and quickly administered formulations, in recent years, there have been increasingly frequent reports of the onset of drug resistance phenomena, which must lead to reconsidering their use. Furthermore, chemical compounds can easily accumulate in the food matrices of the hive, with possible risks for the final consumer. In such a condition, it is imperative to find alternative treatment solutions. Essential oils (EOs) prove to be promising candidates due to their good efficacy and good environmental biodegradability. In this study, the acaricidal efficacy of the EOs of Calamintha sylvatica Bromf., Calamintha nepeta Savi, Lavandula austroapennina N.G. Passal. Tundis & Upson and Mentha piperita L., extracted from botanical species belonging to the Lamiaceae family, was evaluated. The test chosen for the evaluation was residual toxicity by contact. The examined EOs were diluted in Acetone to a concentration of 2, 1 and 0.5 mg/mL. At the highest concentration, the EOs demonstrated an acaricidal activity equal to 52% for C. nepeta, 60% for C. sylvatica, 80% for L. austroapennina and 68% for M. piperita. Of the EOs tested, therefore, Lavender proves to be a good candidate for subsequent evaluations in semi-field and field studies.

17.
Vet Sci ; 9(12)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36548845

ABSTRACT

Varroatosis is an important parasitic disease of Apis mellifera caused by the mite Varroa destructor (V. destructor). The parasite is able to transmit numerous pathogens to honeybees which can lead to colony collapse. In recent years, the effectiveness of authorized drug products has decreased due to increasing resistance phenomena. Therefore, the search for alternatives to commercially available drugs is mandatory. In this context, essential oils (EOs) prove to be a promising choice to be studied for their known acaricide properties. In this research work, the acaricide activity of EO vapours isolated from the epigeal part (whole plant) of fennel (Foeniculum vulgare sbps. piperitum) and its three fractions (leaves, achenes and flowers) against V. destructor was evaluated. The effectiveness of fumigation was studied using two methods. The first involved prolonged exposure of mites to oil vapour for variable times. After exposure, the five mites in each replicate were placed in a Petri dish with an Apis mellifera larva. Mortality, due to chronic toxicity phenomena, was assessed after 48 h. The second method aimed to translate the results obtained from the in vitro test into a semi-field experiment. Therefore, two-level cages were set up. In the lower compartment of the cage, a material releasing oil vapours was placed; in the upper compartment, Varroa-infested honeybees were set. The results of the first method showed that the increase in mortality was directly proportional to exposure time and concentration. The whole plant returned 68% mortality at the highest concentration (2 mg/mL) and highest exposure time (48 h control), while the leaves, achenes and flowers returned 64%, 52% and 56% mortality, respectively. In the semi-field experiment, a concentration up to 20 times higher than the one used in the in vitro study was required for the whole plant to achieve a similar mite drop of >50%. The results of the study show that in vitro tests should only be used for preliminary screening of EO activity. In vitro tests should be followed by semi-field tests, which are essential to identify the threshold of toxicity to bees and the effective dose to be used in field studies.

18.
Plants (Basel) ; 11(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36365365

ABSTRACT

Different phytochemical compounds have been demonstrated to modulate the JAK/STAT signaling pathway. Here, three Cachrys species from Southern Italy were investigated for both the phytochemical profile and the potential anti-inflammatory properties. The aerial parts were extracted with methanol through Naviglio Extractor®, an innovative solid-liquid extraction technique that allows to obtain high quality extracts by working with gradient pressure. Extracts were analyzed with GC-MS and standardized in furanocoumarin content, resulting rich in xanthotoxin, bergapten and isopimpinellin. Given the known ability of bergapten to inhibit the JAK/STAT signaling pathway by decreasing the levels of pro-inflammatory cytokines (TNF-α, IL-6) and inflammatory mediators (NO) in RAW 264.7 cells activated by LPS, Cachrys extracts were investigated for their biological properties. The results obtained in this study showed that Cachrys pungens extract, presenting the highest content in furanocoumarins (7.48 ± 0.48 and 2.94 ± 0.16 mg/50 mg of extract for xanthotoxin and bergapten, respectively), significantly decreased STAT3 protein levels, pro-inflammatory cytokines (TNF-α, IL-6) and increased IL-10 anti-inflammatory cytokine. Cachrys ferulacea significantly decreased JAK2 phosphorylation, being even more effective than bergapten. In conclusion, investigated extracts could be potential candidates for the search of novel anti-inflammatory agents acting via inhibiting the JAK/STAT signaling pathway.

19.
Animals (Basel) ; 12(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36290268

ABSTRACT

Parasites, in particular, gastrointestinal nematodes (GINs) represent one of the main burdens affecting small ruminant farming and pose a serious threat to their health, welfare, productivity, and reproduction. The correct management of animals and the correct use of anthelmintic drugs are the pillars of the GIN control programs for small ruminants. However, globally due to the indiscriminate use of synthetic anthelmintics, there is a significant increase in anthelmintic resistance phenomena to one or more classes of drugs. Even if such a problem never represented a serious threat in southern Italy because of the favourable environmental conditions and because of the good farm management, the phenomenon is actually showing a steep increasing trend and requires alternative treatment measures and constant monitoring. The use of phytotherapies is considered a valuable alternative approach for GIN control in small ruminants and could help with reducing the amount of synthetic drugs used and the forthcoming anthelmintic resistance. From this perspective, the Calabria territory offers a wide number of plants with anthelmintic efficacy that could be helpful for this purpose. The aim of this study was to evaluate the anthelmintic efficacy of aqueous pomegranate (Punica granatum L.) macerate compared to the treatment with Ivermectin and Albendazole in sheep naturally infected with GINs. The pomegranate macerate derives from the ethnoveterinary knowledge of the Calabria region, Southern Italy. The anthelmintic efficacy was evaluated according to the faecal egg count reduction test (FECRt) using the FLOTAC techniques in two sheep farms in Southern Italy. The FECR was calculated from individual samples using the formula FECR = 100 × (1 - [T2/C2]). The treatment with Albendazole in the first farm showed an efficacy of 99.8% after 14 days and 94.8% after 21 days, while the treatment with Ivermectin in the second farm showed an efficacy of 99.9% after 14 days and 96.5% after 21 days of treatment. The pomegranate macerate, in both farms, showed a value of efficacy of around 50% from day 7 to day 21 after the treatment. Previous studies highlighted the presence of gallic acid as the main component in the pomegranate macerate, and its efficacy in nematode control has been as well previously demonstrated in other plant extracts. This in vivo study demonstrated the unequivocal efficacy of plant macerate in easily reducing 50% of the number of GIN eggs in sheep faeces. These results, obtained without the use of synthetic anthelmintics, indicate the use of green veterinary pharmacology as a sustainable alternative to the use of synthetic drugs to reduce the increase in drug resistance phenomena and the environmental impact.

20.
Plants (Basel) ; 11(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893609

ABSTRACT

Ferula communis L. (F. communis) belongs to the Apiaceae family and is a herbaceous plant with various pharmaceutical properties, due to the different contents of bioactive compounds extracted mainly from its roots, as well as its leaves and rhizome. To date, this plant extract has demonstrated estrogenic, anti-inflammatory, antiproliferative, cytotoxic, antimicrobial and anti-neoplastic properties. Its estrogenic activity is justified by the presence of ferutinin, an ester of a sesquiterpenic alcohol that acts as an agonist for estrogen receptors, with a chemical formula equal to C22H3O4. The component present in F. communis responsible for the toxicity of the plant is ferulenol, a prenylated coumarin with the chemical formula C24H30O3. This compound is capable of inducing mortality via its strong anti-coagulant properties, leading to a lethal hemorrhagic syndrome, ferulosis, in animals that feed on a chemotype of F. communis containing a high amount of ferulenol. The removal of the component ferulenol makes extracts of Ferula non-toxic. In fact, the remaining prenylated coumarins are not present in concentrations sufficient to induce toxicity. The intake of high concentrations of the extract of this plant leads a double dose-dependent effect that is typical of sesquiterpenes such as ferutinin. Here, we assessed the cytotoxicity and the estrogenic properties of the F. communis phytocomplex obtained through extraction using a mixture of acetone and water. Among the active constituents of F. communis, the identification of ferutinin and ferulenol was performed using HPLC. The effects of the extract were evaluated, following the removal of ferulenol, on three cell lines: human breast cancer MCF-7, human cervical cancer HeLa and human osteoblastic sarcoma Saos-2. The choice of these cell lines was justified by the need to mimic certain processes which may occur in vivo and which are estrogen-dependent. The obtained results demonstrated that F. communis extract, in addition to possessing an estrogenic-like property, showed a dose-dependent effect. Low concentrations (0.1-0.8 µM) demonstrated a hyperproliferative effect, whereas higher concentrations (1.6-50 µM) were toxic. Therefore, this extract could be an excellent candidate to make up for a reduction or lack of estrogen.

SELECTION OF CITATIONS
SEARCH DETAIL
...