Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
ACS Mater Lett ; 6(1): 56-65, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38178981

ABSTRACT

Propane (C3H8) is a widely used fuel gas. Metal-organic framework (MOF) physisorbents that are C3H8 selective offer the potential to significantly reduce the energy footprint for capturing C3H8 from natural gas, where C3H8 is typically present as a minor component. Here we report the C3H8 recovery performance of a previously unreported lonsdaleite, lon, topology MOF, a chiral metal-organic material, [Ni(S-IEDC)(bipy)(SCN)]n, CMOM-7. CMOM-7 was prepared from three low-cost precursors: Ni(SCN)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy), and its structure was determined by single crystal X-ray crystallography. Pure gas adsorption isotherms revealed that CMOM-7 exhibited high C3H8 uptake (2.71 mmol g-1) at 0.05 bar, an indication of a higher affinity for C3H8 than both C2H6 and CH4. Dynamic column breakthrough experiments afforded high purity C3H8 capture from a gas mixture comprising C3H8/C2H6/CH4 (v/v/v = 5/10/85). Despite the dilute C3H8 stream, CMOM-7 registered a high dynamic uptake of C3H8 and a breakthrough time difference between C3H8 and C2H6 of 79.5 min g-1, superior to those of previous MOF physisorbents studied under the same flow rate. Analysis of crystallographic data and Grand Canonical Monte Carlo simulations provides insight into the two C3H8 binding sites in CMOM-7, both of which are driven by C-H···π and hydrogen bonding interactions.

2.
Cryst Growth Des ; 23(12): 8953-8961, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38076529

ABSTRACT

This work presents two new solid forms, a polymorph and a solvate, of the antifungal active pharmaceutical ingredient griseofulvin (GSF). The novel forms were characterized by powder X-ray diffraction, differential scanning calorimetry, and thermogravimetric analysis, and their crystal structures were determined by single-crystal X-ray diffraction. The new polymorphic form (GSF Form VI) was obtained upon drying at room temperature the GSF-acetonitrile solvate. GSF Form VI is a relict structure related to reported solvates of GSF. Thermal stability studies show that Form VI is metastable and monotropically related to the stable GSF Form I. The new GSF-n-butyl acetate solvate was obtained by crystallization from an n-butyl acetate solution. The stoichiometry of the n-butyl acetate solvate is 1:0.5. The solvate loses the solvent from the crystal lattice at a temperature between 363.15 and 374.15 K.

3.
Chem Commun (Camb) ; 59(96): 14321-14324, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37971413

ABSTRACT

The search for solid solutions of class-two insulin secretagogues, tolbutamide and chlorpropamide, reveals a rare case of monotropic polymorphism for the mixed crystals. At any stoichiometry, two crystal forms are isolated that are kinetically stable at room temperature from a few months to over a year. Dissolution tests certify the solubility advantage of the solid solutions over the pure drugs as well as their physical mixture, suggesting a potential application as a highly soluble co-drug formulation.

4.
Cryst Growth Des ; 23(11): 8139-8146, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37937187

ABSTRACT

Chiral metal-organic materials, CMOMs, are of interest as they can offer selective binding sites for chiral guests. Such binding sites can enable CMOMs to serve as chiral crystalline sponges (CCSs) to determine molecular structure and/or purify enantiomers. We recently reported on the chiral recognition properties of a homochiral cationic diamondoid, dia, network {[Ni(S-IDEC)(bipy)(H2O)][NO3]}n (S-IDEC = S-indoline-2-carboxylicate, bipy = 4,4'-bipyridine), CMOM-5[NO3]. The modularity of CMOM-5[NO3] means there are five feasible approaches to fine-tune structures and properties via substitution of one or more of the following components: metal cation (Ni2+); bridging ligand (S-IDEC); linker (bipy); extra-framework anion (NO3-); and terminal ligand (H2O). Herein, we report the effect of anion substitution on the CCS properties of CMOM-5[NO3] by preparing and characterizing {[Ni(S-IDEC)(bipy)(H2O)][BF4]}n, CMOM-5[BF4]. The chiral channels in CMOM-5[BF4] enabled it to function as a CCS for determination of the absolute crystal structures of both enantiomers of three chiral compounds: 1-phenyl-1-butanol (1P1B); methyl mandelate (MM); ethyl mandelate (EM). Chiral resolution experiments revealed CMOM-5[BF4] to be highly selective toward the S-isomers of MM and EM with enantiomeric excess, ee, values of 82.6 and 78.4%, respectively. The ee measured for S-EM surpasses the 64.3% exhibited by [DyNaL(H2O)4] 6H2O and far exceeds that of CMOM-5[NO3] (6.0%). Structural studies of the binding sites in CMOM-5[BF4] provide insight into their high enantioselectivity.

5.
Cryst Growth Des ; 23(7): 5211-5220, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37426545

ABSTRACT

Chiral metal-organic materials (CMOMs), can offer molecular binding sites that mimic the enantioselectivity exhibited by biomolecules and are amenable to systematic fine-tuning of structure and properties. Herein, we report that the reaction of Ni(NO3)2, S-indoline-2-carboxylic acid (S-IDECH), and 4,4'-bipyridine (bipy) afforded a homochiral cationic diamondoid, dia, network, [Ni(S-IDEC)(bipy)(H2O)][NO3], CMOM-5. Composed of rod building blocks (RBBs) cross-linked by bipy linkers, the activated form of CMOM-5 adapted its pore structure to bind four guest molecules, 1-phenyl-1-butanol (1P1B), 4-phenyl-2-butanol (4P2B), 1-(4-methoxyphenyl)ethanol (MPE), and methyl mandelate (MM), making it an example of a chiral crystalline sponge (CCS). Chiral resolution experiments revealed enantiomeric excess, ee, values of 36.2-93.5%. The structural adaptability of CMOM-5 enabled eight enantiomer@CMOM-5 crystal structures to be determined. The five ordered crystal structures revealed that host-guest hydrogen-bonding interactions are behind the observed enantioselectivity, three of which represent the first crystal structures determined of the ambient liquids R-4P2B, S-4P2B, and R-MPE.

6.
Mol Pharm ; 20(4): 2009-2016, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36884008

ABSTRACT

Praziquantel (PZQ) is a chiral class-II drug, and it is used as a racemate for the treatment of schistosomiasis. The knowledge of several cocrystals with dicarboxylic acids has prompted the realization of solid solutions of PZQ with both enantiomers of malic acid and tartaric acid. Here, the solid form landscape of such a six-component system has been investigated. In the process, two new cocrystals were structural-characterized and three non-stoichiometric, mixed crystal forms identified and isolated. Thermal and solubility analysis indicates a fourfold solubility advantage for the newly prepared solid solutions over the pure drug. In addition, a pharmacokinetic study was conducted in rats, which involved innovative mini-capsules for the oral administration of the solid samples. The available data indicate that the faster dissolution rate of the solid solutions translates in faster absorption of the drug and helps maintain a constant steady-state concentration.


Subject(s)
Anthelmintics , Praziquantel , Animals , Rats , Praziquantel/chemistry , Anthelmintics/chemistry , Solubility
7.
Cryst Growth Des ; 22(5): 3333-3342, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35529065

ABSTRACT

Approximately 80% of active pharmaceutical ingredients (APIs) studied as lead candidates in drug development exhibit low aqueous solubility, which typically results in such APIs being poorly absorbed and exhibiting low bioavailability. Salts of ionizable APIs and, more recently, pharmaceutical cocrystals can address low solubility and other relevant physicochemical properties. Pharmaceutical cocrystals are amenable to design through crystal engineering because supramolecular synthons, especially those sustained by hydrogen bonds, can be anticipated through computational modeling or Cambridge Structural Database (CSD) mining. In this contribution, we report a combined experimental and CSD study on a class of cocrystals that, although present in approved drug substances, remains understudied from a crystal engineering perspective: ionic cocrystals composed of dihydrogen phosphate (DHP) salts and phosphoric acid (PA). Ten novel DHP:PA ionic cocrystals were prepared from nine organic bases (4,4'-bipyridine, 5-aminoquinoline, 4,4'-azopyridine, 1,4-diazabicyclo[2.2.2]octane, piperazine, 1,2-bis(4-pyridyl)ethane, 1,2-bis(4-pyridyl)xylene, 1,2-di(4-pyridyl)-1,2-ethanediol, and isoquinoline-5-carboxylic acid) and one anticonvulsant API, lamotrigine. From the resulting crystal structures and a CSD search of previously reported DHP:PA ionic cocrystals, 46 distinct hydrogen bonding motifs (HBMs) have been identified between DHP anions, PA molecules, and, in some cases, water molecules. Our results indicate that although DHP:PA ionic cocrystals are a challenge from a crystal engineering perspective, they are formed reliably and, given that phosphoric acid is a pharmaceutically acceptable coformer, this makes them relevant to pharmaceutical science.

8.
Faraday Discuss ; 235(0): 446-466, 2022 07 14.
Article in English | MEDLINE | ID: mdl-35446321

ABSTRACT

The ΔpKa rule is commonly applied by chemists and crystal engineers as a guideline for the rational design of molecular salts and co-crystals. For multi-component crystals containing acid and base constituents, empirical evidence has shown that ΔpKa > 4 almost always leads to salts, ΔpKa < -1 almost always leads to co-crystals and ΔpKa between -1 and 4 can be either. This paper reviews the theoretical background of the ΔpKa rule and highlights the crucial role of solvation in determining the outcome of the potential proton transfer from acid to base. New data on the frequency of the occurrence of co-crystals and salts in multi-component crystal structures containing acid and base constituents show that the relationship between ΔpKa and the frequency of salt/co-crystal formation is influenced by the composition of the crystal. For unsolvated co-crystals/salts, containing only the principal acid and base components, the point of 50% probability for salt/co-crystal formation occurs at ΔpKa ≈ 1.4, while for hydrates of co-crystals and salts, this point is shifted to ΔpKa ≈ -0.5. For acid-base crystals with the possibility for two proton transfers, the overall frequency of occurrence of any salt (monovalent or divalent) versus a co-crystal is comparable to that of the whole data set, but the point of 50% probability for observing a monovalent salt vs. a divalent salt lies at ΔpKa,II ≈ -4.5. Hence, where two proton transfers are possible, the balance is between co-crystals and divalent salts, with monovalent salts being far less common. Finally, the overall role played by the "crystal" solvation is illustrated by the fact that acid-base complexes in the intermediate region of ΔpKa tip towards salt formation if ancillary hydrogen bonds can exist. Thus, the solvation strength of the lattice plays a key role in the stabilisation of the ions.


Subject(s)
Protons , Salts , Hydrogen Bonding , Ions , Salts/chemistry
9.
IUCrJ ; 7(Pt 6): 1124-1130, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33209323

ABSTRACT

Multidrug products enable more effective therapies and simpler administration regimens, provided that a stable formulation is prepared, with the desired composition. In this view, solid solutions have the advantage of combining the stability of a single crystalline phase with the potential of stoichiometry variation of a mixture. Here a drug-prodrug solid solution of cortisone and cortisol (hydrocortisone) is described. Despite the structural differences of the two components, the new phase is obtained both from solution and by supercritical CO2 assisted spray drying. In particular, to enter the solid solution, hydrocortisone must violate Etter's rules for hydrogen bonding. As a result, its dissolution rate is almost doubled.

10.
J Am Chem Soc ; 142(15): 6896-6901, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32216372

ABSTRACT

Closed-to-open structural transformations in flexible coordination networks are of potential utility in gas storage and separation. Herein, we report the first example of a flexible SiF62--pillared square grid material, [Cu(SiF6)(L)2]n (L = 1,4-bis(1-imidazolyl)benzene), SIFSIX-23-Cu. SIFSIX-23-Cu exhibits reversible switching between nonporous (ß1) and several porous (α, γ1, γ2, and γ3) phases triggered by exposure to N2, CO2, or H2O. In addition, heating ß1 to 433 K resulted in irreversible transformation to a closed polymorph, ß2. Single-crystal X-ray diffraction studies revealed that the phase transformations are enabled by rotation and geometrical contortion of L. Density functional theory calculations indicated that L exhibits a low barrier to rotation (as low as 8 kJmol-1) and a rather flat energy surface. In situ neutron powder diffraction studies provided further insight into these sorbate-induced phase changes. SIFSIX-23-Cu combines stability in water for over a year, high CO2 uptake (ca. 216 cm3/g at 195 K), and good thermal stability.

11.
IUCrJ ; 6(Pt 4): 630-634, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31316807

ABSTRACT

The investigation of mechanical properties in molecular crystals is emerging as a novel area of interest in crystal engineering. Indeed, good mechanical properties are required to manufacture pharmaceutical and technologically relevant substances into usable products. In such endeavour, bendable single crystals help to correlate microscopic structure to macroscopic properties for potential design. The hydrate forms of two anticonvulsant zwitterionic drugs, Pregabalin and Gabapentin, are two examples of crystalline materials that show macroscopic plasticity. The direct comparison of these structures with those of their anhydrous counterparts, which are brittle, suggests that the presence of water is critical for plasticity. In contrast, structural features such as molecular packing and anisotropic distribution of strong and weak interactions seem less important.

12.
J Org Chem ; 84(12): 7543-7563, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-30830782

ABSTRACT

Effective desymmetrization in copper-catalyzed intramolecular C-H insertion reactions of α-diazo-ß-oxosulfones in the formation of fused thiopyran dioxides is described for the first time. The use of a copper-bis(oxazoline)-NaBARF catalyst complex system leads to formation of the major thiopyran dioxide stereoisomer with up to 98:2 dr and up to 98% ee. The effect of varying the bis(oxazoline) ligand, copper salt, and site of C-H insertion on both diastereo- and enantioselectivities of these intramolecular C-H insertion reactions has been investigated. Similarly, desymmetrization in the formation of a fused cyclopentanone proceeds with up to 64% ee. These results represent the highest enantioselectivity reported to date in a copper-mediated desymmetrization through C-H insertion.

13.
Chem Commun (Camb) ; 55(16): 2297-2300, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30714594

ABSTRACT

The first molecular solid solution of lithium and sodium ions is reported. In spite of the different chemical and structural properties of the parent compounds, the two cations form a homogeneous mixed phase with the isoorotate ion. Such observation appears in contrast with the Hume-Rothery principles for solid solutions. Furthermore the mixed salts in the series are thermally stable up to 100 °C and non-hygroscopic, which makes them relevant for their potential use as a lithium drug substance.

14.
Angew Chem Int Ed Engl ; 57(20): 5684-5689, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29575465

ABSTRACT

Herein, we report that a new flexible coordination network, NiL2 (L=4-(4-pyridyl)-biphenyl-4-carboxylic acid), with diamondoid topology switches between non-porous (closed) and several porous (open) phases at specific CO2 and CH4 pressures. These phases are manifested by multi-step low-pressure isotherms for CO2 or a single-step high-pressure isotherm for CH4 . The potential methane working capacity of NiL2 approaches that of compressed natural gas but at much lower pressures. The guest-induced phase transitions of NiL2 were studied by single-crystal XRD, in situ variable pressure powder XRD, synchrotron powder XRD, pressure-gradient differential scanning calorimetry (P-DSC), and molecular modeling. The detailed structural information provides insight into the extreme flexibility of NiL2 . Specifically, the extended linker ligand, L, undergoes ligand contortion and interactions between interpenetrated networks or sorbate-sorbent interactions enable the observed switching.

15.
Chem Commun (Camb) ; 53(84): 11592-11595, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28990607

ABSTRACT

Fine-tuning of hybrid ultramicroporous materials (HUMs) can significantly impact their gas sorption performance. This study reveals that offset interpenetration can be antagonistic with respect to C2H2 separation from C2H2/C2H4 gas mixtures.

16.
J Am Chem Soc ; 139(28): 9558-9565, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28506068

ABSTRACT

Morphology influences the functionality of covalent organic networks and determines potential applications. Here, we report for the first time the use of Zincke reaction to fabricate, under either solvothermal or microwave conditions, a viologen-linked covalent organic network in the form of hollow particles or nanosheets. The synthesized materials are stable in acidic, neutral, and basic aqueous solutions. Under basic conditions, the neutral network assumes radical cationic character without decomposing or changing structure. Solvent polarity and heating method determine product morphology. Depending upon solvent polarity, the resulting polymeric network forms either uniform self-templated hollow spheres (HS) or hollow tubes (HT). The spheres develop via an inside-out Ostwald ripening mechanism. Interestingly, microwave conditions and certain solvent polarities result in the formation of a robust covalent organic gel framework (COGF) that is organized in nanosheets stacked several layers thick. In the gel phase, the nanosheets are crystalline and form honeycomb lattices. The use of the Zincke reaction has previously been limited to the synthesis of small viologen molecules and conjugated viologen oligomers. Its application here expands the repertoire of tools for the fabrication of covalent organic networks (which are usually prepared by dynamic covalent chemistry) and for the synthesis of viologen-based materials. All three materials-HT, HS, and COGF-serve as efficient adsorbents of iodine due to the presence of the cationic viologen linker and, in the cases of HT and HS, permanent porosity.

17.
Chem Commun (Camb) ; 53(28): 3978-3981, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28332658

ABSTRACT

The aromatic core in dipyridyl linker ligands is found to impact the mode of 2-fold interpenetration in hybrid ultramicroporous materials formed by pillared square grid networks. An analysis of the crystal structures suggests that linker conformation and weak interactions between the linkers in adjacent networks might explain this phenomenon.

18.
ACS Omega ; 2(12): 8969-8981, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-30023597

ABSTRACT

Clofazimine is an antimycobacterial agent that is routinely used for the treatment of leprosy. Clofazimine has also been shown to have high clinical potential for the treatment of many Gram-positive pathogens, including those that exhibit high levels of antibiotic resistance in the medical community. The use of clofazimine against these pathogens has largely been limited by the inherently poor water solubility of the drug substance. In this work, the possibility of repurposing and reformulating clofazimine to maximize its clinical potential is investigated. To achieve this, the potential of novel salt forms of clofazimine as supersaturating drug-delivery vehicles to enhance the aqueous solubility and gastrointestinal solubility of the drug substance was explored. The solution properties of seven novel salt forms, identified during an initial screening process, were examined in water and in a gastrointestinal-like media and were compared and contrasted with those of the free base, clofazimine, and the commercial formulation of the drug, Lamprene. The stability of the most promising solid forms was tested, and their bioactivity against Staphylococcus aureus was also compared with that of the clofazimine free base and Lamprene. Salts forms which showed superior stability as well as solubility and activity to the commercial drug formulation were fully characterized using a combination of spectroscopic techniques, including X-ray diffraction, solid-state NMR, and Fourier transform infrared spectroscopy.

19.
Philos Trans A Math Phys Eng Sci ; 375(2084)2017 Jan 13.
Article in English | MEDLINE | ID: mdl-27895255

ABSTRACT

Sequestration of CO2, either from gas mixtures or directly from air (direct air capture), is a technological goal important to large-scale industrial processes such as gas purification and the mitigation of carbon emissions. Previously, we investigated five porous materials, three porous metal-organic materials (MOMs), a benchmark inorganic material, ZEOLITE 13X: and a chemisorbent, TEPA-SBA-15: , for their ability to adsorb CO2 directly from air and from simulated flue-gas. In this contribution, a further 10 physisorbent materials that exhibit strong interactions with CO2 have been evaluated by temperature-programmed desorption for their potential utility in carbon capture applications: four hybrid ultramicroporous materials, SIFSIX-3-CU: , DICRO-3-NI-I: , SIFSIX-2-CU-I: and MOOFOUR-1-NI: ; five microporous MOMs, DMOF-1: , ZIF-8: , MIL-101: , UIO-66: and UIO-66-NH2: ; an ultramicroporous MOM, NI-4-PYC: The performance of these MOMs was found to be negatively impacted by moisture. Overall, we demonstrate that the incorporation of strong electrostatics from inorganic moieties combined with ultramicropores offers improved CO2 capture performance from even moist gas mixtures but not enough to compete with chemisorbents.This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.

20.
IUCrJ ; 3(Pt 6): 430-439, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27840682

ABSTRACT

Hydrates are technologically important and ubiquitous yet they remain a poorly understood and understudied class of molecular crystals. In this work, we attempt to rationalize propensity towards hydrate formation through crystallization studies of molecules that lack strong hydrogen-bond donor groups. A Cambridge Structural Database (CSD) survey indicates that the statistical occurrence of hydrates in 124 molecules that contain five- and six-membered N-heterocyclic aromatic moieties is 18.5%. However, hydrate screening experiments on a library of 11 N-heterocyclic aromatic compounds with at least two acceptor moieties and no competing hydrogen-bond donors or acceptors reveals that over 70% of this group form hydrates, suggesting that extrapolation from CSD statistics might, at least in some cases, be deceiving. Slurrying in water and exposure to humidity were found to be the most effective discovery methods. Electrostatic potential maps and/or analysis of the crystal packing in anhydrate structures was used to rationalize why certain molecules did not readily form hydrates.

SELECTION OF CITATIONS
SEARCH DETAIL
...