Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Alzheimers Dis ; 99(1): 307-319, 2024.
Article in English | MEDLINE | ID: mdl-38669537

ABSTRACT

Background: Alzheimer's disease (AD) pathology is considered to begin in the brainstem, and cerebral microglia are known to play a critical role in AD pathogenesis, yet little is known about brainstem microglia in AD. Translocator protein (TSPO) PET, sensitive to activated microglia, shows high signal in dorsal brainstem in humans, but the precise location and clinical correlates of this signal are unknown. Objective: To define age and AD associations of brainstem TSPO PET signal in humans. Methods: We applied new probabilistic maps of brainstem nuclei to quantify PET-measured TSPO expression over the whole brain including brainstem in 71 subjects (43 controls scanned using 11C-PK11195; 20 controls and 8 AD subjects scanned using 11C-PBR28). We focused on inferior colliculi (IC) because of visually-obvious high signal in this region, and potential relevance to auditory dysfunction in AD. We also assessed bilateral cortex. Results: TSPO expression was normally high in IC and other brainstem regions. IC TSPO was decreased with aging (p = 0.001) and in AD subjects versus controls (p = 0.004). In cortex, TSPO expression was increased with aging (p = 0.030) and AD (p = 0.033). Conclusions: Decreased IC TSPO expression with aging and AD-an opposite pattern than in cortex-highlights underappreciated regional heterogeneity in microglia phenotype, and implicates IC in a biological explanation for strong links between hearing loss and AD. Unlike in cerebrum, where TSPO expression is considered pathological, activated microglia in IC and other brainstem nuclei may play a beneficial, homeostatic role. Additional study of brainstem microglia in aging and AD is needed.


Subject(s)
Aging , Alzheimer Disease , Brain Stem , Microglia , Positron-Emission Tomography , Receptors, GABA , Humans , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Microglia/metabolism , Microglia/pathology , Male , Aged , Female , Aging/pathology , Brain Stem/metabolism , Brain Stem/pathology , Receptors, GABA/metabolism , Aged, 80 and over , Middle Aged , Isoquinolines , Adult
2.
Brain Commun ; 6(2): fcae043, 2024.
Article in English | MEDLINE | ID: mdl-38482373

ABSTRACT

The progression of PET-based Braak stages correlates with cognitive deterioration in aging and Alzheimer's disease. Here, we investigate the association between PET-based Braak stages and functional impairment and assess whether PET-based Braak staging predicts a longitudinal decline in the performance of activities of daily living. In this cohort study, we evaluated cognitively unimpaired individuals and individuals with mild cognitive impairment or Alzheimer's disease dementia. Participants underwent [18F]MK6240 tau-PET, were assigned a PET-based Braak stage at baseline and were followed for a mean (SD) of 1.97 (0.66) years. Functional performance was evaluated with the Functional Activities Questionnaire, Everyday Cognition and functional Clinical Dementia Rating sum of boxes. Multiple linear regressions assessed the association of PET-based Braak stages with baseline functionality and with the longitudinal rate of change in functional scores, adjusting for age, sex and amyloid-ß load. We employed voxel-based regression models to investigate the association between functionality and tau-PET signal and assessed the voxel overlap with Braak regions of interest. We included 291 individuals (181 cognitively unimpaired, 56 amyloid-ß+ mild cognitive impairment and 54 amyloid-ß+ Alzheimer's disease) aged 70.60 (7.48) years. At baseline, PET-based Braak stages III-IV (ß = 0.43, P = 0.03) and V-VI (ß = 1.20, P < 0.0001) showed associations with poorer Functional Activities Questionnaire scores. Similarly, stages III-IV (ß = 0.43, P = 0.02) and V-VI (ß = 1.15, P < 0.0001) were associated with worse Everyday Cognition scores. Only stages V-VI were associated with higher functional Clinical Dementia Rating sum of boxes (ß = 1.17, P < 0.0001) scores. Increased tau-PET signals in all Braak regions of interest were linked to worse performance in all tools. The voxelwise analysis showed widespread cortical associations between functional impairment and tau-PET and high voxel overlap with Braak regions of interest. Baseline PET-based Braak stages V-VI predicted significant longitudinal functional decline as assessed by the Functional Activities Questionnaire (ß = 1.69, P < 0.0001), the Everyday Cognition (ß = 1.05, P = 0.001) and the functional Clinical Dementia Rating sum of boxes (ß = 1.29, P < 0.0001). Our results suggest that functional impairment increases with the severity of tau accumulation. These findings also indicate that PET-based Braak staging is a good predictor of functional impairment in the Alzheimer's disease continuum. Finally, our study provides evidence for the clinical significance of the PET-based Braak staging framework.

3.
Neurobiol Aging ; 136: 88-98, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335912

ABSTRACT

Understanding whether vascular risk factors (VRFs) synergistically potentiate Alzheimer's disease (AD) progression is important in the context of emerging treatments for preclinical AD. In a group of 503 cognitively unimpaired individuals, we tested whether VRF burden interacts with AD pathophysiology to accelerate neurodegeneration and cognitive decline. Baseline VRF burden was calculated considering medical data and AD pathophysiology was assessed based on cerebrospinal fluid (CSF) amyloid-ß1-42 (Aß1-42) and tau phosphorylated at threonine 181 (p-tau181). Neurodegeneration was assessed with plasma neurofilament light (NfL) and global cognition with the modified version of the Preclinical Alzheimer's Cognitive Composite. The mean (SD) age of participants was 72.9 (6.1) years, and 220 (43.7%) were men. Linear mixed-effects models revealed that an elevated VRF burden synergistically interacted with AD pathophysiology to drive longitudinal plasma NfL increase and cognitive decline. Additionally, VRF burden was not associated with CSF Aß1-42 or p-tau181 changes over time. Our results suggest that VRF burden and AD pathophysiology are independent processes; however, they synergistically lead to neurodegeneration and cognitive deterioration. In preclinical stages, the combination of therapies targeting VRFs and AD pathophysiology might potentiate treatment outcomes.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Male , Humans , Aged , Female , tau Proteins/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Amyloid beta-Peptides/cerebrospinal fluid , Cognition/physiology , Disease Progression
4.
Mol Psychiatry ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38366114

ABSTRACT

Glutamatergic neurotransmission system dysregulation may play an important role in the pathophysiology of Alzheimer's disease (AD). However, reported results on glutamatergic components across brain regions are contradictory. Here, we conducted a systematic review with meta-analysis to examine whether there are consistent glutamatergic abnormalities in the human AD brain. We searched PubMed and Web of Science (database origin-October 2023) reports evaluating glutamate, glutamine, glutaminase, glutamine synthetase, glutamate reuptake, aspartate, excitatory amino acid transporters, vesicular glutamate transporters, glycine, D-serine, metabotropic and ionotropic glutamate receptors in the AD human brain (PROSPERO #CDRD42022299518). The studies were synthesized by outcome and brain region. We included cortical regions, the whole brain (cortical and subcortical regions combined), the entorhinal cortex and the hippocampus. Pooled effect sizes were determined with standardized mean differences (SMD), random effects adjusted by false discovery rate, and heterogeneity was examined by I2 statistics. The search retrieved 6 936 articles, 63 meeting the inclusion criteria (N = 709CN/786AD; mean age 75/79). We showed that the brain of AD individuals presents decreased glutamate (SMD = -0.82; I2 = 74.54%; P < 0.001) and aspartate levels (SMD = -0.64; I2 = 89.71%; P = 0.006), and reuptake (SMD = -0.75; I2 = 83.04%; P < 0.001. We also found reduced α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-GluA2/3 levels (SMD = -0.63; I2 = 95.55%; P = 0.046), hypofunctional N-methyl-D-aspartate receptor (NMDAR) (SMD = -0.60; I2 = 91.47%; P < 0.001) and selective reduction of NMDAR-GluN2B subunit levels (SMD = -1.07; I2 = 41.81%; P < 0.001). Regional differences include lower glutamate levels in cortical areas and aspartate levels in cortical areas and in the hippocampus, reduced glutamate reuptake, reduced AMPAR-GluA2/3 in the entorhinal cortex, hypofunction of NMDAR in cortical areas, and a decrease in NMDAR-GluN2B subunit levels in the entorhinal cortex and hippocampus. Other parameters studied were not altered. Our findings show depletion of the glutamatergic system and emphasize the importance of understanding glutamate-mediated neurotoxicity in AD. This study has implications for the development of therapies and biomarkers in AD.

5.
Mol Neurodegener ; 19(1): 2, 2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38185677

ABSTRACT

BACKGROUND: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Amyloidogenic Proteins , Immunoassay , Mass Spectrometry , Biomarkers
6.
Alzheimers Dement ; 20(2): 1166-1174, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37920945

ABSTRACT

INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95%  = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.


Subject(s)
Alzheimer Disease , Humans , tau Proteins , Cross-Sectional Studies , Amyloid beta-Peptides , Biomarkers , Positron-Emission Tomography
7.
Brain ; 147(4): 1497-1510, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-37988283

ABSTRACT

Females are disproportionately affected by dementia due to Alzheimer's disease. Despite a similar amyloid-ß (Aß) load, a higher load of neurofibrillary tangles (NFTs) is seen in females than males. Previous literature has proposed that Aß and phosphorylated-tau (p-tau) synergism accelerates tau tangle formation, yet the effect of biological sex in this process has been overlooked. In this observational study, we examined longitudinal neuroimaging data from the TRIAD and ADNI cohorts from Canada and USA, respectively. We assessed 457 participants across the clinical spectrum of Alzheimer's disease. All participants underwent baseline multimodal imaging assessment, including MRI and PET, with radioligands targeting Aß plaques and tau tangles, respectively. CSF data were also collected. Follow-up imaging assessments were conducted at 1- and 2-year intervals for the TRIAD cohort and 1-, 2- and 4-year intervals for the ADNI cohort. The upstream pathological events contributing to faster tau progression in females were investigated-specifically, whether the contribution of Aß and p-tau synergism to accelerated tau tangle formation is modulated by biological sex. We hypothesized that cortical Aß predisposes tau phosphorylation and tangle accumulation in a sex-specific manner. Findings revealed that Aß-positive females presented higher CSF p-tau181 concentrations compared with Aß-positive males in both the TRIAD (P = 0.04, Cohen's d = 0.51) and ADNI (P = 0.027, Cohen's d = 0.41) cohorts. In addition, Aß-positive females presented faster NFT accumulation compared with their male counterparts (TRIAD: P = 0.026, Cohen's d = 0.52; ADNI: P = 0.049, Cohen's d = 1.14). Finally, the triple interaction between female sex, Aß and CSF p-tau181 was revealed as a significant predictor of accelerated tau accumulation at the 2-year follow-up visit (Braak I: P = 0.0067, t = 2.81; Braak III: P = 0.017, t = 2.45; Braak IV: P = 0.002, t = 3.17; Braak V: P = 0.006, t = 2.88; Braak VI: P = 0.0049, t = 2.93). Overall, we report sex-specific modulation of cortical Aß in tau phosphorylation, consequently facilitating faster NFT progression in female individuals over time. This presents important clinical implications and suggests that early intervention that targets Aß plaques and tau phosphorylation may be a promising therapeutic strategy in females to prevent the further accumulation and spread of tau aggregates.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Alzheimer Disease/pathology , Phosphorylation , Brain/pathology , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Neurofibrillary Tangles/pathology , Plaque, Amyloid/pathology , Positron-Emission Tomography , Biomarkers/metabolism
8.
J Neuroinflammation ; 20(1): 278, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38001539

ABSTRACT

INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.


Subject(s)
Alzheimer Disease , Amyloidosis , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Gliosis , tau Proteins/metabolism , 14-3-3 Proteins
9.
JAMA Netw Open ; 6(11): e2345175, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38010651

ABSTRACT

Importance: Neuropsychiatric symptoms are commonly encountered and are highly debilitating in patients with Alzheimer disease. Understanding their underpinnings has implications for identifying biomarkers and treatment for these symptoms. Objective: To evaluate whether glial markers are associated with neuropsychiatric symptoms in individuals across the Alzheimer disease continuum. Design, Setting, and Participants: This cross-sectional study was conducted from January to June 2023, leveraging data from the Translational Biomarkers in Aging and Dementia cohort at McGill University, Canada. Recruitment was based on referrals of individuals from the community or from outpatient clinics. Exclusion criteria included active substance abuse, major surgery, recent head trauma, safety contraindications for positron emission tomography (PET) or magnetic resonance imaging, being currently enrolled in other studies, and having inadequately treated systemic conditions. Main Outcomes and Measures: All individuals underwent assessment for neuropsychiatric symptoms (Neuropsychiatry Inventory Questionnaire [NPI-Q]), and imaging for microglial activation ([11C]PBR28 PET), amyloid-ß ([18F]AZD4694 PET), and tau tangles ([18F]MK6240 PET). Results: Of the 109 participants, 72 (66%) were women and 37 (34%) were men; the median age was 71.8 years (range, 38.0-86.5 years). Overall, 70 had no cognitive impairment and 39 had cognitive impairment (25 mild; 14 Alzheimer disease dementia). Amyloid-ß PET positivity was present in 21 cognitively unimpaired individuals (30%) and in 31 cognitively impaired individuals (79%). The NPI-Q severity score was associated with microglial activation in the frontal, temporal, and parietal cortices (ß = 7.37; 95% CI, 1.34-13.41; P = .01). A leave-one-out approach revealed that irritability was the NPI-Q domain most closely associated with the presence of brain microglial activation (ß = 6.86; 95% CI, 1.77-11.95; P = .008). Furthermore, we found that microglia-associated irritability was associated with study partner burden measured by NPI-Q distress score (ß = 5.72; 95% CI, 0.33-11.10; P = .03). Conclusions and Relevance: In this cross-sectional study of 109 individuals across the AD continuum, microglial activation was associated with and a potential biomarker of neuropsychiatric symptoms in Alzheimer disease. Moreover, our findings suggest that the combination of amyloid-ß- and microglia-targeted therapies could have an impact on relieving these symptoms.


Subject(s)
Alzheimer Disease , Male , Humans , Female , Aged , Alzheimer Disease/pathology , Microglia/pathology , tau Proteins , Cross-Sectional Studies , Amyloid beta-Peptides , Biomarkers
10.
Front Aging Neurosci ; 15: 1225816, 2023.
Article in English | MEDLINE | ID: mdl-37920382

ABSTRACT

Background: Alzheimer's disease (AD) diagnosis in its early stages remains difficult with current diagnostic approaches. Though tau neurofibrillary tangles (NFTs) generally follow the stereotypical pattern described by the Braak staging scheme, the network degeneration hypothesis (NDH) has suggested that NFTs spread selectively along functional networks of the brain. To evaluate this, we implemented a Bayesian workflow to develop hierarchical multinomial logistic regression models with increasing levels of complexity of the brain from tau-PET and structural MRI data to investigate whether it is beneficial to incorporate network-level information into an ROI-based predictive model for the presence/absence of AD. Methods: This study included data from the Translational Biomarkers in Aging and Dementia (TRIAD) longitudinal cohort from McGill University's Research Centre for Studies in Aging (MCSA). Baseline and 1 year follow-up structural MRI and [18F]MK-6240 tau-PET scans were acquired for 72 cognitive normal (CN), 23 mild cognitive impairment (MCI), and 18 Alzheimer's disease dementia subjects. We constructed the four following hierarchical Bayesian models in order of increasing complexity: (Model 1) a complete-pooling model with observations, (Model 2) a partial-pooling model with observations clustered within ROIs, (Model 3) a partial-pooling model with observations clustered within functional networks, and (Model 4) a partial-pooling model with observations clustered within ROIs that are also clustered within functional brain networks. We then investigated which of the models had better predictive performance given tau-PET or structural MRI data as an input, in the form of a relative annualized rate of change. Results: The Bayesian leave-one-out cross-validation (LOO-CV) estimate of the expected log pointwise predictive density (ELPD) results indicated that models 3 and 4 were substantially better than other models for both tau-PET and structural MRI inputs. For tau-PET data, model 3 was slightly better than 4 with an absolute difference in ELPD of 3.10 ± 1.30. For structural MRI data, model 4 was considerably better than other models with an absolute difference in ELPD of 29.83 ± 7.55 relative to model 3, the second-best model. Conclusion: Our results suggest that representing the data generating process in terms of a hierarchical model that encompasses both ROI-level and network-level heterogeneity leads to better predictive ability for both tau-PET and structural MRI inputs over all other model iterations.

11.
Nat Aging ; 3(10): 1210-1218, 2023 10.
Article in English | MEDLINE | ID: mdl-37749258

ABSTRACT

The mechanisms by which the apolipoprotein E ε4 (APOEε4) allele influences the pathophysiological progression of Alzheimer's disease (AD) are poorly understood. Here we tested the association of APOEε4 carriership and amyloid-ß (Aß) burden with longitudinal tau pathology. We longitudinally assessed 94 individuals across the aging and AD spectrum who underwent clinical assessments, APOE genotyping, magnetic resonance imaging, positron emission tomography (PET) for Aß ([18F]AZD4694) and tau ([18F]MK-6240) at baseline, as well as a 2-year follow-up tau-PET scan. We found that APOEε4 carriership potentiates Aß effects on longitudinal tau accumulation over 2 years. The APOEε4-potentiated Aß effects on tau-PET burden were mediated by longitudinal plasma phosphorylated tau at threonine 217 (p-tau217+) increase. This longitudinal tau accumulation as measured by PET was accompanied by brain atrophy and clinical decline. Our results suggest that the APOEε4 allele plays a key role in Aß downstream effects on the aggregation of phosphorylated tau in the living human brain.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Apolipoprotein E4 , Heterozygote , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins/genetics , Apolipoprotein E4/genetics , Alleles
12.
J Neurosci Res ; 101(12): 1849-1863, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37732456

ABSTRACT

Studies have shown that prenatal maternal stress (PNMS) affects brain structure and function in childhood. However, less research has examined whether PNMS effects on brain structure and function extend to young adulthood. We recruited women who were pregnant during or within 3 months following the 1998 Quebec ice storm, assessed their PNMS, and prospectively followed-up their children. T1-weighted magnetic resonance imaging (MRI) and resting-state functional MRI were obtained from 19-year-old young adults with (n = 39) and without (n = 65) prenatal exposure to the ice storm. We examined between-group differences in gray matter volume (GMV), surface area (SA), and cortical thickness (CT). We used the brain regions showing between-group GMV differences as seeds to compare between-group functional connectivity. Within the Ice Storm group, we examined (1) associations between PNMS and the atypical GMV, SA, CT, and functional connectivity, and (2) moderation by timing of exposure. Primarily, we found that, compared to Controls, the Ice Storm youth had larger GMV and higher functional connectivity of the anterior cingulate cortex, the precuneus, the left occipital pole, and the right hippocampus; they also had larger CT, but not SA, of the left occipital pole. Within the Ice Storm group, maternal subjective distress during preconception and mid-to-late pregnancy was associated with atypical left occipital pole CT. These results suggest the long-lasting impact of disaster-related PNMS on child brain structure and functional connectivity. Our study also indicates timing-specific effects of the subjective aspect of PNMS on occipital thickness.

13.
Alzheimers Dement ; 19(10): 4463-4474, 2023 10.
Article in English | MEDLINE | ID: mdl-37534889

ABSTRACT

INTRODUCTION: Phosphorylated tau (p-tau) biomarkers have been recently proposed to represent brain amyloid-ß (Aß) pathology. Here, we evaluated the plasma biomarkers' contribution beyond the information provided by demographics (age and sex) to identify Aß and tau pathologies in individuals segregated as cognitively unimpaired (CU) and impaired (CI). METHODS: We assessed 138 CU and 87 CI with available plasma p-tau231, 217+ , and 181, Aß42/40, GFAP and Aß- and tau-PET. RESULTS: In CU, only plasma p-tau231 and p-tau217+ significantly improved the performance of the demographics in detecting Aß-PET positivity, while no plasma biomarker provided additional information to identify tau-PET positivity. In CI, p-tau217+ and GFAP significantly contributed to demographics to identify both Aß-PET and tau-PET positivity, while p-tau231 only provided additional information to identify tau-PET positivity. DISCUSSION: Our results support plasma p-tau231 and p-tau217+ as state markers of early Aß deposition, but in later disease stages they inform on tau tangle accumulation. HIGHLIGHTS: It is still unclear how much plasma biomarkers contribute to identification of AD pathology across the AD spectrum beyond the information already provided by demographics (age + sex). Plasma p-tau231 and p-tau217+ contribute to demographic information to identify brain Aß pathology in preclinical AD. In CI individuals, plasma p-tau231 contributes to age and sex to inform on the accumulation of tau tangles, while p-tau217+ and GFAP inform on both Aß deposition and tau pathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Plasma , Biomarkers , tau Proteins , Positron-Emission Tomography
14.
Alzheimers Dement (Amst) ; 15(3): e12391, 2023.
Article in English | MEDLINE | ID: mdl-37644990

ABSTRACT

Introduction: [18F]AZD4694 is an amyloid beta (Aß) imaging agent used in several observational studies and clinical trials. However, no studies have yet published data on longitudinal Aß accumulation measured with [18F]AZD4694. Methods: We assessed 146 individuals who were evaluated with [18F]AZD4694 at baseline and 2-year follow-up. We calculated annual rates of [18F]AZD4694 change for clinically defined and biomarker-defined groups. Results: Cognitively unimpaired (CU) older adults displayed subtle [18F]AZD4694 standardized uptake value ratio (SUVR) accumulation over the follow-up period. In contrast, Aß positive CU older adults displayed higher annual [18F]AZD4694 SUVR increases. [18F]AZD4694 SUVR accumulation in Aß positive mild cognitive impairment (MCI) and dementia was modest across the neocortex. Discussion: Larger increases in [18F]AZD4694 SUVR were observed in CU individuals who had abnormal amyloid positron emission tomography levels at baseline. [18F]AZD4694 can be used to monitor Aß levels in therapeutic trials as well as clinical settings, particularly prior to initiating anti-amyloid therapies.

15.
J Nucl Med ; 64(8): 1171-1178, 2023 08.
Article in English | MEDLINE | ID: mdl-37321820

ABSTRACT

Amyloid-ß plaques and neurofibrillary tangles (NFTs) are the 2 histopathologic hallmarks of Alzheimer disease (AD). On the basis of the pattern of NFT distribution in the brain, Braak and Braak proposed a histopathologic staging system for AD. Braak staging provides a compelling framework for staging and monitoring of NFT progression in vivo using PET imaging. Because AD staging remains based on clinical features, there is an unmet need to translate neuropathologic staging to a biologic clinical staging system. Such a biomarker staging system might play a role in staging preclinical AD or in improving recruitment strategies for clinical trials. Here, we review the literature regarding AD staging with the Braak framework using tau PET imaging, here called PET-based Braak staging. Our aim is to summarize the efforts of implementing Braak staging using PET and assess correspondence with the Braak histopathologic descriptions and with AD biomarkers. Methods: We conducted a systematic literature search in May 2022 on PubMed and Scopus combining the terms "Alzheimer" AND "Braak" AND ("positron emission tomography" OR "PET"). Results: The database search returned 262 results, and after assessment for eligibility, 21 studies were selected. Overall, most studies indicate that PET-based Braak staging may be an efficient method to stage AD since it presents an adequate ability to discriminate between phases of the AD continuum and correlates with clinical, fluid, and imaging biomarkers of AD. However, the translation of the original Braak descriptions to tau PET was done taking into account the limitations of this imaging technique. This led to important interstudy variability in the anatomic definitions of Braak stage regions of interest. Conclusion: Refinements in this staging system are necessary to incorporate atypical variants and Braak-nonconformant cases. Further studies are needed to understand the possible applications of PET-based Braak staging to clinical practice and research. Furthermore, there is a need for standardization in the topographic definitions of Braak stage regions of interest to guarantee reproducibility and methodologic homogeneity across studies.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Reproducibility of Results , tau Proteins , Neurofibrillary Tangles , Amyloid beta-Peptides , Positron-Emission Tomography , Plaque, Amyloid
16.
Alzheimers Dement ; 19(12): 5343-5354, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37190913

ABSTRACT

INTRODUCTION: Fluid biomarkers capable of specifically tracking tau tangle pathology in vivo are greatly needed. METHODS: We measured cerebrospinal fluid (CSF) and plasma concentrations of N-terminal tau fragments (NTA-tau), using a novel immunoassay (NTA) in the TRIAD cohort, consisting of 272 individuals assessed with amyloid beta (Aß) positron emission tomography (PET), tau PET, magnetic resonance imaging (MRI) and cognitive assessments. RESULTS: CSF and plasma NTA-tau concentrations were specifically increased in cognitively impaired Aß-positive groups. CSF and plasma NTA-tau concentrations displayed stronger correlations with tau PET than with Aß PET and MRI, both in global uptake and at the voxel level. Regression models demonstrated that both CSF and plasma NTA-tau are preferentially associated with tau pathology. Moreover, plasma NTA-tau was associated with longitudinal tau PET accumulation across the aging and Alzheimer's disease (AD) spectrum. DISCUSSION: NTA-tau is a biomarker closely associated with in vivo tau deposition in the AD continuum and has potential as a tau tangle biomarker in clinical settings and trials. HIGHLIGHTS: An assay for detecting N-terminal tau fragments (NTA-tau) in plasma and CSF was evaluated. NTA-tau is more closely associated with tau PET than amyloid PET or neurodegeneration. NTA-tau can successfully track in vivo tau deposition across the AD continuum. Plasma NTA-tau increased over time only in cognitively impaired amyloid-ß positive individuals.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Neurofibrillary Tangles/pathology , Amyloid beta-Peptides/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Alzheimer Disease/diagnosis , Positron-Emission Tomography/methods , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction/diagnosis
17.
Nat Aging ; 3(6): 661-669, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37198279

ABSTRACT

Blood phosphorylated tau (p-tau) biomarkers, at differing sites, demonstrate high accuracy to detect Alzheimer's disease (AD). However, knowledge on the optimal marker for disease identification across the AD continuum and the link to pathology is limited. This is partly due to heterogeneity in analytical methods. In this study, we employed an immunoprecipitation mass spectrometry method to simultaneously quantify six phosphorylated (p-tau181, p-tau199, p-tau202, p-tau205, p-tau217 and p-tau231) and two non-phosphorylated plasma tau peptides in a total of 214 participants from the Paris Lariboisière and Translational Biomarkers of Aging and Dementia cohorts. Our results indicate that p-tau217, p-tau231 and p-tau205 are the plasma tau forms that best reflect AD-related brain changes, although with distinct emergences along the disease course and correlations with AD features-amyloid and tau. These findings support the differential association of blood p-tau variants with AD pathology, and our method offers a potential tool for disease staging in clinical trials.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Alzheimer Disease/diagnosis , Amyloidogenic Proteins , Biomarkers , Brain/pathology , tau Proteins
18.
Brain Commun ; 5(3): fcad146, 2023.
Article in English | MEDLINE | ID: mdl-37252014

ABSTRACT

A classical early sign of typical Alzheimer's disease is memory decline, which has been linked to the aggregation of tau in the medial temporal lobe. Verbal delayed free recall and recognition tests have consistently probed useful to detect early memory decline, and there is substantial debate on how performance, particularly in recognition tests, is differentially affected through health and disease in older adults. Using in vivo PET-Braak staging, we investigated delayed recall and recognition memory dysfunction across the Alzheimer's disease spectrum. Our cross-sectional study included 144 cognitively unimpaired elderly, 39 amyloid-ß+ individuals with mild cognitive impairment and 29 amyloid-ß+ Alzheimer's disease patients from the Translational Biomarkers in Aging and Dementia cohort, who underwent [18F]MK6240 tau and [18F]AZD4694 amyloid PET imaging, structural MRI and memory assessments. We applied non-parametric comparisons, correlation analyses, regression models and voxel-wise analyses. In comparison with PET-Braak Stage 0, we found that reduced, but not clinically significant, delayed recall starts at PET-Braak Stage II (adjusted P < 0.0015), and that recognition (adjusted P = 0.011) displayed a significant decline starting at PET-Braak Stage IV. While performance in both delayed recall and recognition related to tau in nearly the same cortical areas, further analyses showed that delayed recall rendered stronger associations in areas of early tau accumulation, whereas recognition displayed stronger correlations in mostly posterior neocortical regions. Our results support the notion that delayed recall and recognition deficits are predominantly associated with tau load in allocortical and neocortical areas, respectively. Overall, delayed recall seems to be more dependent on the integrity of anterior medial temporal lobe structures, while recognition appears to be more affected by tau accumulation in cortices beyond medial temporal regions.

19.
Nat Med ; 29(7): 1775-1781, 2023 07.
Article in English | MEDLINE | ID: mdl-37248300

ABSTRACT

An unresolved question for the understanding of Alzheimer's disease (AD) pathophysiology is why a significant percentage of amyloid-ß (Aß)-positive cognitively unimpaired (CU) individuals do not develop detectable downstream tau pathology and, consequently, clinical deterioration. In vitro evidence suggests that reactive astrocytes unleash Aß effects in pathological tau phosphorylation. Here, in a biomarker study across three cohorts (n = 1,016), we tested whether astrocyte reactivity modulates the association of Aß with tau phosphorylation in CU individuals. We found that Aß was associated with increased plasma phosphorylated tau only in individuals positive for astrocyte reactivity (Ast+). Cross-sectional and longitudinal tau-positron emission tomography analyses revealed an AD-like pattern of tau tangle accumulation as a function of Aß only in CU Ast+ individuals. Our findings suggest astrocyte reactivity as an important upstream event linking Aß with initial tau pathology, which may have implications for the biological definition of preclinical AD and for selecting CU individuals for clinical trials.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides , Astrocytes/pathology , Biomarkers , Cross-Sectional Studies , Positron-Emission Tomography , tau Proteins
20.
Alzheimers Dement ; 19(11): 4967-4977, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37078495

ABSTRACT

INTRODUCTION: Plasma biomarkers are promising tools for Alzheimer's disease (AD) diagnosis, but comparisons with more established biomarkers are needed. METHODS: We assessed the diagnostic performance of p-tau181 , p-tau217 , and p-tau231 in plasma and CSF in 174 individuals evaluated by dementia specialists and assessed with amyloid-PET and tau-PET. Receiver operating characteristic (ROC) analyses assessed the performance of plasma and CSF biomarkers to identify amyloid-PET and tau-PET positivity. RESULTS: Plasma p-tau biomarkers had lower dynamic ranges and effect sizes compared to CSF p-tau. Plasma p-tau181 (AUC = 76%) and p-tau231 (AUC = 82%) assessments performed inferior to CSF p-tau181 (AUC = 87%) and p-tau231 (AUC = 95%) for amyloid-PET positivity. However, plasma p-tau217 (AUC = 91%) had diagnostic performance indistinguishable from CSF (AUC = 94%) for amyloid-PET positivity. DISCUSSION: Plasma and CSF p-tau217 had equivalent diagnostic performance for biomarker-defined AD. Our results suggest that plasma p-tau217 may help reduce the need for invasive lumbar punctures without compromising accuracy in the identification of AD. HIGHLIGHTS: p-tau217 in plasma performed equivalent to p-tau217 in CSF for the diagnosis of AD, suggesting the increased accessibility of plasma p-tau217 is not offset by lower accuracy. p-tau biomarkers in plasma had lower mean fold-changes between amyloid-PET negative and positive groups than p-tau biomarkers in CSF. CSF p-tau biomarkers had greater effect sizes than plasma p-tau biomarkers when differentiating between amyloid-PET positive and negative groups. Plasma p-tau181 and plasma p-tau231 performed worse than p-tau181 and p-tau231 in CSF for AD diagnosis.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnosis , Spinal Puncture , Amyloidogenic Proteins , Plasma , Biomarkers , tau Proteins , Amyloid beta-Peptides
SELECTION OF CITATIONS
SEARCH DETAIL
...