Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Fish Dis ; 43(3): 327-335, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31984516

ABSTRACT

Ectoparasitic flatworms of Nasicola (Monogenoidea: Capsalidae), which infect nasal epithelium of true tunas (Thunnus spp.), are not well studied, nor have their impacts on the host's olfactory organ been evaluated. Infections of Nasicola hogansi on Atlantic bluefin tuna, Thunnus thynnus, were investigated with emphasis on the relationship between infection prevalence, abundance and mean intensity with bluefin tuna size, sex, body condition and capture month, as well as histopathological effects. Commercially caught Atlantic bluefin tuna (n = 161, 185-305 cm curved fork length) from the Gulf of Maine were sampled during June through August 2009 for infections by N. hogansi. A total of 247 specimens of N. hogansi were collected, with a prevalence of 45.3%, mean abundance of 1.57 (CI: 1.21-2.03) and mean intensity of 3.45 (CI: 2.91-4.22). Neither fish sex nor landing month had a significant effect on parasite parameters. Larger and better-conditioned Atlantic bluefin tuna had a higher mean intensity of infection. Pathology associated with infection by N. hogansi included extensive necrosis, sloughing of the nasal epithelium and associated inflammation of underlying connective tissues. Further epidemiological and pathological study of this host-parasite system is warranted since impaired olfaction, if present, could adversely affect spawning and migration of this top ocean predator.


Subject(s)
Fish Diseases/epidemiology , Trematoda/isolation & purification , Trematode Infections/veterinary , Tuna , Animals , Atlantic Ocean/epidemiology , Body Size , Fish Diseases/parasitology , New England/epidemiology , Population Density , Prevalence , Seasons , Sex Factors , Trematode Infections/epidemiology , Trematode Infections/parasitology
2.
Sci Rep ; 6: 38163, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27905559

ABSTRACT

Isla Mujeres, Mexico is home to one of the most well-known aggregations of sailfish. Despite its fisheries prominence, little is known about this sailfish assemblage, or its relationship to other aggregation sites in the western Atlantic. In January 2012, April 2013 and 2014, we deployed 34 popup satellite archival tags on sailfish in order to study their behavior, population connectivity and biophysical interactions. Sailfish were monitored for up to one year, and displayed (1) predominantly shelf associated activity (2) occupancy of the Yucatán Current near Isla Mujeres for up to five months and (3) subsequent dispersals from the Yucatán to productive coastal areas in the Gulf of Mexico, the Caribbean Sea and along the South American coast. Tagged sailfish occupied a median temperature of 26.4°C (interquartile range, IQR = 2.5 °C; range = 12.3-33.3 °C) and median depth of 4.4 m (IQR = 19 m; range = 0-452 m). Diel activity was present and individuals made distinctive descents before sunrise and sunset. Tracking missions of sufficient duration (~1 year) revealed previously undetected connectivity between western Atlantic sailfish fisheries and pelagic longline catches, and highlighted how fishery independent tagging can improve understanding of sailfish migrations and behavior for assessment and management.


Subject(s)
Animal Migration/physiology , Fishes/physiology , Animals , Fisheries , Gulf of Mexico
3.
Environ Sci Technol ; 50(23): 12825-12830, 2016 Dec 06.
Article in English | MEDLINE | ID: mdl-27934271

ABSTRACT

Tunas are apex predators in marine food webs that can accumulate mercury (Hg) to high concentrations and provide more Hg (∼40%) to the U.S population than any other source. We measured Hg concentrations in 1292 Atlantic bluefin tuna (ABFT, Thunnus thynnus) captured in the Northwest Atlantic from 2004 to 2012. ABFT Hg concentrations and variability increased nonlinearly with length, weight, and age, ranging from 0.25 to 3.15 mg kg-1, and declined significantly at a rate of 0.018 ± 0.003 mg kg-1 per year or 19% over an 8-year period from the 1990s to the early 2000s. Notably, this decrease parallels comparably reduced anthropogenic Hg emission rates in North America and North Atlantic atmospheric Hg0 concentrations during this period, suggesting that recent efforts to decrease atmospheric Hg loading have rapidly propagated up marine food webs to a commercially important species. This is the first evidence to suggest that emission reduction efforts have resulted in lower Hg concentrations in large, long-lived fish.


Subject(s)
Mercury , Tuna , Animals , Atlantic Ocean , Fishes , North America
5.
Proc Natl Acad Sci U S A ; 113(12): 3299-304, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26951668

ABSTRACT

Atlantic bluefin tuna are a symbol of both the conflict between preservationist and utilitarian views of top ocean predators, and the struggle to reach international consensus on the management of migratory species. Currently, Atlantic bluefin tuna are managed as an early-maturing eastern stock, which spawns in the Mediterranean Sea, and a late-maturing western stock, which spawns in the Gulf of Mexico. However, electronic tagging studies show that many bluefin tuna, assumed to be of a mature size, do not visit either spawning ground during the spawning season. Whether these fish are spawning in an alternate location, skip-spawning, or not spawning until an older age affects how vulnerable this species is to anthropogenic stressors including exploitation. We use larval collections to demonstrate a bluefin tuna spawning ground in the Slope Sea, between the Gulf Stream and northeast United States continental shelf. We contend that western Atlantic bluefin tuna have a differential spawning migration, with larger individuals spawning in the Gulf of Mexico, and smaller individuals spawning in the Slope Sea. The current life history model, which assumes only Gulf of Mexico spawning, overestimates age at maturity for the western stock. Furthermore, individual tuna occupy both the Slope Sea and Mediterranean Sea in separate years, contrary to the prevailing view that individuals exhibit complete spawning-site fidelity. Overall, this complexity of spawning migrations questions whether there is complete independence in the dynamics of eastern and western Atlantic bluefin tuna and leads to lower estimates of the vulnerability of this species to exploitation and other anthropogenic stressors.


Subject(s)
Animal Migration , Tuna/physiology , Animals , Atlantic Ocean , Reproduction
6.
Proc Biol Sci ; 282(1804): 20143129, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25761714

ABSTRACT

Leatherback sea turtles (Dermochelys coriacea) travel thousands of kilometres between temperate feeding and tropical breeding/over-wintering grounds, with adult turtles able to pinpoint specific nesting beaches after multi-year absences. Their extensive migrations often occur in oceanic habitat where limited known sensory information is available to aid in orientation. Here, we examined the migratory orientation of adult male, adult female and subadult leatherbacks during their open-ocean movements within the North Atlantic subtropical gyre by analysing satellite-derived tracks from fifteen individuals over a 2-year period. To determine the turtles' true headings, we corrected the reconstructed tracks for current drift and found negligible differences between current-corrected and observed tracks within the gyre. Individual leatherback headings were remarkably consistent throughout the subtropical gyre, with turtles significantly oriented to the south-southeast. Adult leatherbacks of both sexes maintained similar mean headings and showed greater orientation precision overall. The consistent headings maintained by adult and subadult leatherbacks within the gyre suggest use of a common compass sense.


Subject(s)
Animal Migration , Orientation , Turtles/physiology , Age Factors , Animals , Atlantic Ocean , Female , Male , Seasons
7.
Sci Rep ; 4: 7205, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25431301

ABSTRACT

We introduce a novel endocrine approach for assessing the unresolved matter of the timing of sexual maturation in western Atlantic bluefin tuna (ABFT), a highly migratory population whose status remains uncertain. Ratios of follicle stimulating hormone to luteinizing hormone, a sexual maturity indicator, in all ABFT ≥ 134 cm curved fork length (CFL) were <0.4, similar to Mediterranean spawners, indicating that western ABFT mature at considerably smaller sizes and at a much younger age than currently assumed (≥ 185 cm CFL).


Subject(s)
Reproduction/physiology , Sexual Maturation/physiology , Tuna/physiology , Animal Migration/physiology , Animals , Female , Follicle Stimulating Hormone/metabolism , Genetics, Population/methods , Luteinizing Hormone/metabolism , Male , Population Dynamics , Tuna/metabolism
8.
PLoS One ; 9(3): e91726, 2014.
Article in English | MEDLINE | ID: mdl-24646920

ABSTRACT

Leatherback sea turtles, Dermochelys coriacea, are highly migratory predators that feed exclusively on gelatinous zooplankton, thus playing a unique role in coastal and pelagic food webs. From 2007 to 2010, we used satellite telemetry to monitor the movements and dive behavior of nine adult and eleven subadult leatherbacks captured on the Northeast USA shelf and tracked throughout the Northwest Atlantic. Leatherback movements and environmental associations varied by oceanographic region, with slow, sinuous, area-restricted search behavior and shorter, shallower dives occurring in cool (median sea surface temperature: 18.4°C), productive (median chlorophyll a: 0.80 mg m(-3)), shallow (median bathymetry: 57 m) shelf habitat with strong sea surface temperature gradients (median SST gradient: 0.23°C km(-1)) at temperate latitudes. Leatherbacks were highly aggregated in temperate shelf and slope waters during summer, early fall, and late spring and more widely dispersed in subtropical and tropical oceanic and neritic habitat during late fall, winter and early spring. We investigated the relationship of ecoregion, satellite-derived surface chlorophyll, satellite-derived sea surface temperature, SST gradient, chlorophyll gradient and bathymetry with leatherback search behavior using generalized linear mixed-effects models. The most well supported model showed that differences in leatherback search behavior were best explained by ecoregion and regional differences in bathymetry and SST. Within the Northwest Atlantic Shelves region, leatherbacks increased path sinuosity (i.e., looping movements) with increasing SST, but this relationship reversed within the Gulf Stream region. Leatherbacks increased path sinuosity with decreasing water depth in temperate and tropical shelf habitats. This relationship is consistent with increasing epipelagic gelatinous zooplankton biomass with decreasing water depth, and bathymetry may be a key feature in identifying leatherback foraging habitat in neritic regions. High-use habitat for leatherbacks in our study occurred in coastal waters of the North American eastern seaboard and eastern Caribbean, putting turtles at heightened risk from land- and ocean-based human activity.


Subject(s)
Diving/physiology , Feeding Behavior/physiology , Models, Statistical , Movement/physiology , Turtles/physiology , Animal Migration , Animals , Atlantic Ocean , Chlorophyll/biosynthesis , Conservation of Natural Resources , Diving/psychology , Feeding Behavior/psychology , Female , Food Chain , Male , Telemetry , Temperature , Zooplankton/physiology
9.
PLoS One ; 8(9): e75480, 2013.
Article in English | MEDLINE | ID: mdl-24069420

ABSTRACT

The Gulf of Maine, NW Atlantic Ocean, is a productive, seasonal foraging ground for Atlantic bluefin tuna (Thunnus thynnus), but commercial landings of adult size classes were up to 40% below the allocated total allowable catch between 2004 to 2008 for the rod and reel, harpoon, and purse seine categories in the Gulf of Maine. Reduction in Atlantic bluefin tuna catches in the Gulf of Maine could represent a decline in spawning stock biomass, but given wide-ranging, complex migration patterns, and high energetic requirements, an alternative hypothesis is that their dispersal patterns shifted to regions with higher prey abundance or profitability, reducing availability to U.S. fishing fleets. This study fit generalized linear models to Atlantic bluefin tuna landings data collected from fishermen's logbooks (1979-2005) as well as the distances between bluefin tuna schools and Atlantic herring (Clupeaharengus), a primary prey species, to test alternative hypotheses for observed shifts in Atlantic bluefin tuna availability in the Gulf of Maine. For the bluefin model, landings varied by day of year, latitude and longitude. The effect of latitude differed by day of year and the effect of longitude differed by year. The distances between Atlantic bluefin tuna schools and Atlantic herring schools were significantly smaller (p<0.05) than would be expected from a randomly distributed population. A time series of average bluefin tuna school positions was positively correlated with the average number of herring captured per tow on Georges Bank in spring and autumn surveys respectively (p<0.01, r(2)=0.24, p<0.01, r(2)=0.42). Fishermen's logbooks contributed novel spatial and temporal information towards testing these hypotheses for the bluefin tuna fishery.


Subject(s)
Ecosystem , Tuna , Animals , Atlantic Ocean , Maine , Models, Theoretical , Population Density , Population Dynamics , Spatial Analysis
10.
J Acoust Soc Am ; 133(6): 3802-12, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23742334

ABSTRACT

Schools of Atlantic bluefin tuna (Thunnus thynnus) can exhibit highly organized spatial structure within the school. This structure was quantified for dome shaped schools using both aerial imagery collected from a commercial spotter plane and 400 kHz multibeam echo sounder data collected on a fishing vessel in 2009 in Cape Cod Bay, MA. Observations from one school, containing an estimated 263 fish within an approximately ellipsoidal volume of 1900 m(3), were used to seed an acoustic model that estimated the school target strength at frequencies between 10 and 2000 Hz. The fish's swimbladder resonance was estimated to occur at approximately 50 Hz. The acoustic model examined single and multiple scattering solutions and also a completely incoherent summation of scattering responses from the fish. Three levels of structure within the school were examined, starting with fish locations that were constrained by the school boundaries but placed according to a Poisson process, then incorporating a constraint on the distance to the nearest neighbor, and finally adding a constraint on the bearing to the nearest neighbor. Results suggest that both multiple scattering and spatial organization within the school should be considered when estimating the target strength of schools similar to the ones considered here.

12.
J Exp Biol ; 213(Pt 23): 4074-83, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21075949

ABSTRACT

In the face of the physical and physiological challenges of performing breath-hold deep dives, marine vertebrates have evolved different strategies. Although behavioural strategies in marine mammals and seabirds have been investigated in detail, little is known about the deepest-diving reptile - the leatherback turtle (Dermochelys coriacea). Here, we deployed tri-axial accelerometers on female leatherbacks nesting on St Croix, US Virgin Islands, to explore their diving strategy. Our results show a consistent behavioural pattern within dives among individuals, with an initial period of active swimming at relatively steep descent angles (∼-40 deg), with a stroke frequency of 0.32 Hz, followed by a gliding phase. The depth at which the gliding phase began increased with the maximum depth of the dives. In addition, descent body angles and vertical velocities were higher during deeper dives. Leatherbacks might thus regulate their inspired air-volume according to the intended dive depth, similar to hard-shelled turtles and penguins. During the ascent, turtles actively swam with a stroke frequency of 0.30 Hz but with a low vertical velocity (∼0.40 ms(-1)) and a low pitch angle (∼+26 deg). Turtles might avoid succumbing to decompression sickness ('the bends') by ascending slowly to the surface. In addition, we suggest that the low body temperature of this marine ectotherm compared with that of endotherms might help reduce the risk of bubble formation by increasing the solubility of nitrogen in the blood. This physiological advantage, coupled with several behavioural and physical adaptations, might explain the particular ecological niche the leatherback turtle occupies among marine reptiles.


Subject(s)
Behavior, Animal/physiology , Diving/physiology , Turtles/physiology , Animals , Biomechanical Phenomena/physiology , Female , Movement/physiology , United States Virgin Islands
13.
J Anim Ecol ; 77(4): 838-46, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18489570

ABSTRACT

1. Lipids have more negative delta(13)C values relative to other major biochemical compounds in plant and animal tissues. Although variable lipid content in biological tissues alters results and conclusions of delta(13)C analyses in aquatic food web and migration studies, no standard correction protocol exists. 2. We compared chemical extraction and mathematical correction methods for freshwater and marine fishes and aquatic invertebrates to better understand impacts of correction approaches on carbon (delta(13)C) and nitrogen (delta(15)N) stable isotope data. 3. Fish and aquatic invertebrate tissue delta(13)C values increased significantly following extraction for almost all species and tissue types relative to nonextracted samples. In contrast, delta(15)N was affected for muscle and whole body samples from only a few freshwater and marine species and had a limited effect for the entire data set. 4. Lipid normalization models, using C : N as a proxy for lipid content, predicted lipid-corrected delta(13)C for paired data sets more closely with parameters specific to the tissue type and species to which they were applied. 5. We present species- and tissue-specific models based on bulk C : N as a reliable alternative to chemical extraction corrections. By analysing a subset of samples before and after lipid extraction, models can be applied to the species and tissues of interest that will improve estimates of dietary sources using stable isotopes.


Subject(s)
Carbon Isotopes/chemistry , Food Chain , Lipid Metabolism/physiology , Lipids/chemistry , Nitrogen Isotopes/chemistry , Animals , Carbon Isotopes/analysis , Chemistry Techniques, Analytical/methods , Fishes/metabolism , Invertebrates/metabolism , Lipids/analysis , Models, Biological , Nitrogen Isotopes/analysis , Reproducibility of Results , Sensitivity and Specificity , Species Specificity , Tissue Distribution
14.
Rapid Commun Mass Spectrom ; 22(7): 1081-6, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18327856

ABSTRACT

Stable isotope ratios act as chemical tracers of animal diet, and are used to study food web dynamics. Because carbon stable isotope values are influenced by tissue lipid content, a number of extraction methods have been used to remove lipid bias, but, in some species and tissues, extractions also alter nitrogen isotope values. We have analyzed delta(13)C and delta(15)N in Atlantic bluefin tuna liver and white muscle, and whole Atlantic herring, fish tissues covering a wide range of lipid content (bulk C:N 3.1-12.5). In order to compare delta(13)C and delta(15)N values from traditional chloroform/methanol extractions with non-polar solvent alternatives, we analyzed samples following (1) no treatment, (2) lipid removal using chloroform/methanol (2:1), and (3) Soxhlet extractions using chloroform, diethyl ether or hexane. Chloroform/methanol and chloroform extractions produced the lowest C:N values and highest delta(13)C values. In bluefin tuna, chloroform and hexane extractions significantly altered liver delta(15)N, and all methods significantly altered delta(15)N values in white muscle. Whole Atlantic herring delta(15)N was not altered by any extraction method, while the 2:1 chloroform/methanol extraction most completely removed fish tissue lipid components. Our results indicate that delta(15)N effects are not limited to common chloroform/methanol extractions and suggest that chloroform/methanol is the most effective extraction for delta(13)C correction. Given evidence for delta(15)N alteration among all tested methods, mathematical correction approaches should be further explored as an alternative to lipid correction.


Subject(s)
Artifacts , Carbon Isotopes/chemistry , Chloroform/chemistry , Fishes/metabolism , Lipids/chemistry , Methanol/chemistry , Nitrogen Isotopes/chemistry , Algorithms , Animals , Carbon Isotopes/analysis , Mass Spectrometry/methods , Nitrogen Isotopes/analysis , Reproducibility of Results , Sensitivity and Specificity , Solid Phase Extraction/methods , Solvents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...