Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
2.
Am J Infect Control ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692307

ABSTRACT

BACKGROUND: Understanding the epidemiology of carbapenem-resistant A. baumannii complex (CRAB) and the patients impacted is an important step toward informing better infection prevention and control practices and improving public health response. METHODS: Active, population-based surveillance was conducted for CRAB in 9 U.S. sites from January 1 to December 31, 2019. Medical records were reviewed, isolates were collected and characterized including antimicrobial susceptibility testing and whole genome sequencing. RESULTS: Among 136 incident cases in 2019, 66 isolates were collected and characterized; 56.5% were from cases who were male, 54.5% were from persons of Black or African American race with non-Hispanic ethnicity, and the median age was 63.5 years. Most isolates, 77.2%, were isolated from urine, and 50.0% were collected in the outpatient setting; 72.7% of isolates harbored an acquired carbapenemase gene (aCP), predominantly blaOXA-23 or blaOXA-24/40; however, an isolate with blaNDM was identified. The antimicrobial agent with the most in vitro activity was cefiderocol (96.9% of isolates were susceptible). CONCLUSIONS: Our surveillance found that CRAB isolates in the U.S. commonly harbor an aCP, have an antimicrobial susceptibility profile that is defined as difficult-to-treat resistance, and epidemiologically are similar regardless of the presence of an aCP.

3.
Microbiol Spectr ; 12(2): e0282823, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38174931

ABSTRACT

Acinetobacter baumannii is a Gram-negative bacillus that can cause severe and difficult-to-treat healthcare-associated infections. A. baumannii can harbor mobile genetic elements carrying genes that produce carbapenemase enzymes, further limiting therapeutic options for infections. In the United States, the Antimicrobial Resistance Laboratory Network (AR Lab Network) conducts sentinel surveillance of carbapenem-resistant Acinetobacter baumannii (CRAB). Participating clinical laboratories sent CRAB isolates to the AR Lab Network for characterization, including antimicrobial susceptibility testing and molecular detection of class A (Klebsiella pneumoniae carbapenemase), class B (Active-on-Imipenem, New Delhi metallo-ß-lactamase, and Verona integron-encoded metallo-ß-lactamase), and class D (Oxacillinase, blaOXA-23-like, blaOXA-24/40-like, blaOXA-48-like, and blaOXA-58-like) carbapenemase genes. During 2017‒2020, 6,026 CRAB isolates from 45 states were tested for targeted carbapenemase genes; 1% (64 of 5,481) of CRAB tested for targeted class A and class B genes were positive, but 83% (3,351 of 4,041) of CRAB tested for targeted class D genes were positive. The number of CRAB isolates carrying a class A or B gene increased from 2 of 312 (<1%) tested in 2017 to 26 of 1,708 (2%) tested in 2020. Eighty-three percent (2,355 of 2,846) of CRAB with at least one of the targeted carbapenemase genes and 54% (271 of 500) of CRAB without were categorized as extensively drug resistant; 95% (42 of 44) of isolates carrying more than one targeted gene had difficult-to-treat susceptibility profiles. CRAB isolates carrying targeted carbapenemase genes present an emerging public health threat in the United States, and their rapid detection is crucial to improving patient safety.IMPORTANCEThe Centers for Disease Control and Prevention has classified CRAB as an urgent public health threat. In this paper, we used a collection of >6,000 contemporary clinical isolates to evaluate the phenotypic and genotypic properties of CRAB detected in the United States. We describe the frequency of specific carbapenemase genes detected, antimicrobial susceptibility profiles, and the distribution of CRAB isolates categorized as multidrug resistant, extensively drug-resistant, or difficult to treat. We further discuss the proportion of isolates showing susceptibility to Food and Drug Administration-approved agents. Of note, 84% of CRAB tested harbored at least one class A, B, or D carbapenemase genes targeted for detection and 83% of these carbapenemase gene-positive CRAB were categorized as extensively drug resistant. Fifty-four percent of CRAB isolates without any of these carbapenemase genes detected were still extensively drug-resistant, indicating that infections caused by CRAB are highly resistant and pose a significant risk to patient safety regardless of the presence of one of these carbapenemase genes.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Humans , Anti-Bacterial Agents/pharmacology , Acinetobacter baumannii/genetics , Carbapenems , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics
4.
Microb Genom ; 9(11)2023 Nov.
Article in English | MEDLINE | ID: mdl-37987646

ABSTRACT

Carbapenem-resistant Enterobacterales (CRE) are an urgent public health threat. Genomic sequencing is an important tool for investigating CRE. Through the Division of Healthcare Quality Promotion Sentinel Surveillance system, we collected CRE and carbapenem-susceptible Enterobacterales (CSE) from nine clinical laboratories in the USA from 2013 to 2016 and analysed both phenotypic and genomic sequencing data for 680 isolates. We describe the molecular epidemiology and antimicrobial susceptibility testing (AST) data of this collection of isolates. We also performed a phenotype-genotype correlation for the carbapenems and evaluated the presence of virulence genes in Klebsiella pneumoniae complex isolates. These AST and genomic sequencing data can be used to compare and contrast CRE and CSE at these sites and serve as a resource for the antimicrobial resistance research community.


Subject(s)
Anti-Bacterial Agents , Gammaproteobacteria , United States/epidemiology , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Chromosome Mapping , Carbapenems/pharmacology
5.
J Clin Microbiol ; 61(10): e0115422, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37791777

ABSTRACT

Accurate antimicrobial susceptibility testing (AST) and reporting are essential for guiding appropriate therapy for patients and direction for public health prevention and control actions. A critical feature of AST reporting is the interpretation of AST results using clinical breakpoints for reporting as susceptible, susceptible-dose dependent, intermediate, or resistant. Breakpoints are subject to continuous adjustment and updating to best reflect current clinical data. These breakpoint changes can benefit patients and public health only if adopted in a timely manner. A recent survey identified that up to 70% of College of American Pathologists (CAP)-accredited U.S. laboratories and 45% of CAP-accredited laboratories outside the U.S. use various obsolete clinical breakpoints to interpret AST results to guide patient care. The reason for the ongoing use of obsolete breakpoints is multifactorial, including barriers encountered by laboratories, commercial AST device manufacturers, standards development organizations, and regulatory bodies alike. To begin to address this important patient safety issue, CAP implemented checklist requirements for CAP-accredited laboratories to ensure up-to-date clinical breakpoint use. Furthermore, the topic was discussed at the June 2022 American Society for Microbiology Clinical Microbiology Open (CMO) with various stakeholders to identify potential solutions. This minireview summarizes the breakpoint setting process in the U.S. and highlights solutions to close the gap between breakpoint revisions and implementation in clinical and public health laboratories. Solutions discussed include clarification of data requirements and minimum inhibitory concentration only reporting for regulatory clearance of AST devices, clinical data generation to close breakpoints gaps, advocacy, education, and greater dialogue between stakeholders.


Subject(s)
Anti-Bacterial Agents , Laboratories , Humans , United States , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
6.
Microbiol Spectr ; 11(3): e0413422, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37067448

ABSTRACT

Chlorhexidine bathing to prevent transmission of multidrug-resistant organisms has been adopted by many U.S. hospitals, but increasing chlorhexidine use has raised concerns about possible emergence of resistance. We sought to establish a broth microdilution method for determining chlorhexidine MICs and then used the method to evaluate chlorhexidine MICs for bacteria that can cause health care-associated infections. We adapted a broth microdilution method for determining chlorhexidine MICs, poured panels, established quality control ranges, and tested Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Enterobacter cloacae complex isolates collected at three U.S. sites. Chlorhexidine MICs were determined for 535 isolates including 129 S. aureus, 156 E. coli, 142 K. pneumoniae, and 108 E. cloacae complex isolates. The respective MIC distributions for each species ranged from 1 to 8 mg/L (MIC50 = 2 mg/L and MIC90 = 4 mg/L), 1 to 64 mg/L (MIC50 = 2 mg/L and MIC90 = 4 mg/L), 4 to 64 mg/L (MIC50 = 16 mg/L and MIC90 = 32 mg/L), and 1 to >64 mg/L (MIC50 = 16 mg/L and MIC90 = 64 mg/L). We successfully adapted a broth microdilution procedure that several laboratories were able to use to determine the chlorhexidine MICs of bacterial isolates. This method could be used to investigate whether chlorhexidine MICs are increasing. IMPORTANCE Chlorhexidine bathing to prevent transmission of multidrug-resistant organisms and reduce health care-associated infections has been adopted by many hospitals. There is concern about the possible unintended consequences of using this agent widely. One possible unintended consequence is decreased susceptibility to chlorhexidine, but there are not readily available methods to perform this evaluation. We developed a method for chlorhexidine MIC testing that can be used to evaluate for possible unintended consequences.


Subject(s)
Anti-Bacterial Agents , Chlorhexidine , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Chlorhexidine/pharmacology , Staphylococcus aureus , Escherichia coli , Bacteria , Klebsiella pneumoniae , Microbial Sensitivity Tests
8.
Microbiol Spectr ; : e0164622, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36719248

ABSTRACT

Selective or cascade reporting (SR/CR) of antimicrobial susceptibility testing (AST) results is a strategy for antimicrobial stewardship. SR/CR is often achieved by suppressing AST results of secondary drugs in electronic laboratory reports. We assessed the extent of SR/CR and its impact on cumulative antibiograms (CAs) in a large cohort of U.S. hospitals submitting AST data to the CDC's National Healthcare Safety Network (NHSN) through electronic data exchange. The NHSN calls for hospitals to extract AST data from their electronic systems. We analyzed the AST reported for Escherichia coli (blood and urine) and Staphylococcus aureus (blood and lower respiratory tract [LRT]) isolates from April 2020 to March 2021, used AST reporting patterns to assign SR/CR reporting status for hospitals, and compared their CAs. Sensitivity analyses were done to account for those potentially extracted complete data. At least 35% and 41% of the hospitals had AST data that were suppressed in more than 20% blood isolates for E. coli and S. aureus isolates, respectively. At least 63% (blood) and 50% (urine) routinely reported ciprofloxacin or levofloxacin for E. coli isolates; and 60% (blood) and 59% (LRT) routinely reported vancomycin for S. aureus isolates. The distribution of CAs for many agents differed between high SR/CR and low- or non-SR/CR hospitals. Hospitals struggled to obtain complete AST data through electronic data exchange because of data suppression. Use of SR/CR can bias CAs if incomplete data are used. Technical solutions are needed for extracting complete AST results for public health surveillance. IMPORTANCE This study is the first to assess the extent of using selective and/or cascade antimicrobial susceptibility reporting for antimicrobial stewardship among U.S. hospitals and its impact on cumulative antibiograms in the context of electronic data exchange for national antimicrobial resistance surveillance.

9.
Am J Infect Control ; 51(1): 70-77, 2023 01.
Article in English | MEDLINE | ID: mdl-35909003

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are usually healthcare-associated but are also emerging in the community. METHODS: Active, population-based surveillance was conducted to identify case-patients with cultures positive for Enterobacterales not susceptible to a carbapenem (excluding ertapenem) and resistant to all third-generation cephalosporins tested at 8 US sites from January 2012 to December 2015. Medical records were used to classify cases as health care-associated, or as community-associated (CA) if a patient had no known health care risk factors and a culture was collected <3 days after hospital admission. Enterobacterales isolates from selected cases were submitted to CDC for whole genome sequencing. RESULTS: We identified 1499 CRE cases in 1194 case-patients; 149 cases (10%) in 139 case-patients were CA. The incidence of CRE cases per 100,000 population was 2.96 (95% CI: 2.81, 3.11) overall and 0.29 (95% CI: 0.25, 0.35) for CA-CRE. Most CA-CRE cases were in White persons (73%), females (84%) and identified from urine cultures (98%). Among the 12 sequenced CA-CRE isolates, 5 (42%) harbored a carbapenemase gene. CONCLUSIONS: Ten percent of CRE cases were CA; some isolates from CA-CRE cases harbored carbapenemase genes. Continued CRE surveillance in the community is critical to monitor emergence outside of traditional health care settings.


Subject(s)
Carbapenems , Enterobacteriaceae Infections , Female , United States/epidemiology , Humans , Carbapenems/pharmacology , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae , beta-Lactamases/genetics , Health Facilities , Risk Factors , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
10.
Clin Infect Dis ; 76(5): 890-896, 2023 03 04.
Article in English | MEDLINE | ID: mdl-36208202

ABSTRACT

BACKGROUND: Antimicrobial susceptibility testing (AST) is not routinely performed for Clostridioides difficile and data evaluating minimum inhibitory concentrations (MICs) are limited. We performed AST and whole genome sequencing (WGS) for 593 C. difficile isolates collected between 2012 and 2017 through the Centers for Disease Control and Prevention's Emerging Infections Program. METHODS: MICs to 6 antimicrobial agents (ceftriaxone, clindamycin, meropenem, metronidazole, moxifloxacin, and vancomycin) were determined using the reference agar dilution method according to Clinical and Laboratory Standards Institute guidelines. Whole genome sequencing was performed on all isolates to detect the presence of genes or mutations previously associated with resistance. RESULTS: Among all isolates, 98.5% displayed a vancomycin MIC ≤2 µg/mL and 97.3% displayed a metronidazole MIC ≤2 µg/mL. Ribotype 027 (RT027) isolates displayed higher vancomycin MICs (MIC50: 2 µg/mL; MIC90: 2 µg/mL) than non-RT027 isolates (MIC50: 0.5 µg/mL; MIC90: 1 µg/mL) (P < .01). No vanA/B genes were detected. RT027 isolates also showed higher MICs to clindamycin and moxifloxacin and were more likely to harbor associated resistance genes or mutations. CONCLUSIONS: Elevated MICs to antibiotics used for treatment of C. difficile infection were rare, and there was no increase in MICs over time. The lack of vanA/B genes or mutations consistently associated with elevated vancomycin MICs suggests there are multifactorial mechanisms of resistance. Ongoing surveillance of C. difficile using reference AST and WGS to monitor MIC trends and the presence of antibiotic resistance mechanisms is essential.


Subject(s)
Clostridioides difficile , Clostridium Infections , Humans , United States/epidemiology , Vancomycin/pharmacology , Vancomycin/therapeutic use , Metronidazole/therapeutic use , Clindamycin/therapeutic use , Moxifloxacin/therapeutic use , Clostridioides/genetics , Clostridium Infections/epidemiology , Clostridium Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Genomics , Microbial Sensitivity Tests , Ribotyping
11.
Antimicrob Agents Chemother ; 66(9): e0049622, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36066241

ABSTRACT

The CDC's Emerging Infections Program (EIP) conducted population- and laboratory-based surveillance of US carbapenem-resistant Pseudomonas aeruginosa (CRPA) from 2016 through 2018. To characterize the pathotype, 1,019 isolates collected through this project underwent antimicrobial susceptibility testing and whole-genome sequencing. Sequenced genomes were classified using the seven-gene multilocus sequence typing (MLST) scheme and a core genome (cg)MLST scheme was used to determine phylogeny. Both chromosomal and horizontally transmitted mechanisms of carbapenem resistance were assessed. There were 336 sequence types (STs) among the 1,019 sequenced genomes, and the genomes varied by an average of 84.7% of the cgMLST alleles used. Mutations associated with dysfunction of the porin OprD were found in 888 (87.1%) of the genomes and were correlated with carbapenem resistance, and a machine learning model incorporating hundreds of genetic variations among the chromosomal mechanisms of resistance was able to classify resistant genomes. While only 7 (0.1%) isolates harbored carbapenemase genes, 66 (6.5%) had acquired non-carbapenemase ß-lactamase genes, and these were more likely to have OprD dysfunction and be resistant to all carbapenems tested. The genetic diversity demonstrates that the pathotype includes a variety of strains, and clones previously identified as high-risk make up only a minority of CRPA strains in the United States. The increased carbapenem resistance in isolates with acquired non-carbapenemase ß-lactamase genes suggests that horizontally transmitted mechanisms aside from carbapenemases themselves may be important drivers of the spread of carbapenem resistance in P. aeruginosa.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Centers for Disease Control and Prevention, U.S. , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Porins/genetics , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , United States/epidemiology , beta-Lactamases/genetics , beta-Lactamases/metabolism
13.
Microbiol Spectr ; 10(4): e0252221, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35856667

ABSTRACT

Colistin is a last-resort antibiotic for multidrug-resistant Gram-negative infections. Recently, the ninth allele of the mobile colistin resistance (mcr) gene family, designated mcr-9, was reported. However, its clinical and public health significance remains unclear. We queried genomes of carbapenem-resistant Enterobacterales (CRE) for mcr-9 from a convenience sample of clinical isolates collected between 2012 and 2017 through the Georgia Emerging Infections Program, a population- and laboratory-based surveillance program. Isolates underwent phenotypic characterization and whole-genome sequencing. Phenotypic characteristics, genomic features, and clinical outcomes of mcr-9-positive and -negative CRE cases were then compared. Among 235 sequenced CRE genomes, 13 (6%) were found to harbor mcr-9, all of which were Enterobacter cloacae complex. The median MIC and rates of heteroresistance and inducible resistance to colistin were similar between mcr-9-positive and -negative isolates. However, rates of resistance were higher among mcr-9-positive isolates across most antibiotic classes. All cases had significant health care exposures. The 90-day mortality was similarly high in both mcr-9-positive (31%) and -negative (7%) CRE cases. Nucleotide identity and phylogenetic analysis did not reveal geotemporal clustering. mcr-9-positive isolates had a significantly higher number of median [range] antimicrobial resistance (AMR) genes (16 [4 to 22] versus 6 [2 to 15]; P < 0.001) than did mcr-9-negative isolates. Pangenome tests confirmed a significant association of mcr-9 detection with mobile genetic element and heavy metal resistance genes. Overall, the presence of mcr-9 was not associated with significant changes in colistin resistance or clinical outcomes, but continued genomic surveillance to monitor for emergence of AMR genes is warranted. IMPORTANCE Colistin is a last-resort antibiotic for multidrug-resistant Gram-negative infections. A recently described allele of the mobile colistin resistance (mcr) gene family, designated mcr-9, has been widely reported among Enterobacterales species. However, its clinical and public health significance remains unclear. We compared characteristics and outcomes of mcr-9-positive and -negative CRE cases. All cases were acquired in the health care setting and associated with a high rate of mortality. The presence of mcr-9 was not associated with significant changes in colistin resistance, heteroresistance, or inducible resistance but was associated with resistance to other antimicrobials and antimicrobial resistance (AMR), virulence, and heavy metal resistance (HMR) genes. Overall, the presence of mcr-9 was not associated with significant phenotypic changes or clinical outcomes. However, given the increase in AMR and HMR gene content and potential clinical impact, continued genomic surveillance of multidrug-resistant organisms to monitor for emergence of AMR genes is warranted.


Subject(s)
Carbapenems , Colistin , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Genomics , Microbial Sensitivity Tests , Phylogeny , Plasmids
14.
Microb Drug Resist ; 28(6): 645-653, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35639112

ABSTRACT

Healthcare-associated carbapenem-resistant Acinetobacter baumannii (CRAB) infections are a serious threat associated with global epidemic clones and a variety of carbapenemase gene classes. In this study, we describe the molecular epidemiology, including whole-genome sequencing analysis and antimicrobial susceptibility profiles of 92 selected, nonredundant CRAB collected through public health efforts in the United States from 2013 to 2017. Among the 92 isolates, the Oxford (OX) multilocus sequence typing scheme identified 30 sequence types (STs); the majority of isolates (n = 59, 64%) represented STs belonging to the international clonal complex 92 (CC92OX). Among these, ST208OX (n = 21) and ST281OX (n = 20) were the most common. All isolates carried an OXA-type carbapenemase gene, comprising 20 alleles. Ninety isolates (98%) encoded an intrinsic OXA-51-like enzyme; 67 (73%) harbored an additional acquired blaOXA gene, most commonly blaOXA-23 (n = 45; 49%). Compared with isolates harboring only intrinsic oxacillinase genes, acquired blaOXA gene presence was associated with higher prevalence of resistance and a higher median minimum inhibitory concentration to the carbapenem imipenem (64 µg/mL vs. 8 µg/mL), and antibiotics from other drug classes, including penicillin, aminoglycosides, cephalosporins, and polymyxins. These data illustrate the wide distribution of CC92OX and high prevalence of acquired blaOXA carbapenemase genes among CRAB in the United States.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Cross Infection , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Cross Infection/epidemiology , Humans , Microbial Sensitivity Tests , Molecular Epidemiology , Multilocus Sequence Typing , United States/epidemiology , beta-Lactamases/genetics
16.
J Immunol ; 208(6): 1500-1508, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35228262

ABSTRACT

Oral fluids offer a noninvasive sampling method for the detection of Abs. Quantification of IgA and IgG Abs in saliva allows studies of the mucosal and systemic immune response after natural infection or vaccination. We developed and validated an enzyme immunoassay (EIA) to detect and quantify salivary IgA and IgG Abs against the prefusion-stabilized form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein expressed in suspension-adapted HEK-293 cells. Normalization against total Ab isotype was performed to account for specimen differences, such as collection time and sample volume. Saliva samples collected from 187 SARS-CoV-2 confirmed cases enrolled in 2 cohorts and 373 prepandemic saliva samples were tested. The sensitivity of both EIAs was high (IgA, 95.5%; IgG, 89.7%) without compromising specificity (IgA, 99%; IgG, 97%). No cross-reactivity with endemic coronaviruses was observed. The limit of detection for SARS-CoV-2 salivary IgA and IgG assays were 1.98 ng/ml and 0.30 ng/ml, respectively. Salivary IgA and IgG Abs were detected earlier in patients with mild COVID-19 symptoms than in severe cases. However, severe cases showed higher salivary Ab titers than those with a mild infection. Salivary IgA titers quickly decreased after 6 wk in mild cases but remained detectable until at least week 10 in severe cases. Salivary IgG titers remained high for all patients, regardless of disease severity. In conclusion, EIAs for both IgA and IgG had high specificity and sensitivity for the confirmation of current or recent SARS-CoV-2 infections and evaluation of the IgA and IgG immune response.


Subject(s)
Antibodies, Viral/metabolism , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , SARS-CoV-2/physiology , Saliva/metabolism , Adolescent , Adult , Aged , Asymptomatic Diseases , Child , Child, Preschool , Disease Progression , Enzyme-Linked Immunosorbent Assay/standards , Female , Humans , Infant , Male , Mass Screening , Middle Aged , Pandemics , Reference Standards , Sensitivity and Specificity , Severity of Illness Index , Young Adult
17.
Infect Control Hosp Epidemiol ; 43(11): 1586-1594, 2022 11.
Article in English | MEDLINE | ID: mdl-35156596

ABSTRACT

OBJECTIVE: The incidence of infections from extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales (ESBL-E) is increasing in the United States. We describe the epidemiology of ESBL-E at 5 Emerging Infections Program (EIP) sites. METHODS: During October-December 2017, we piloted active laboratory- and population-based (New York, New Mexico, Tennessee) or sentinel (Colorado, Georgia) ESBL-E surveillance. An incident case was the first isolation from normally sterile body sites or urine of Escherichia coli or Klebsiella pneumoniae/oxytoca resistant to ≥1 extended-spectrum cephalosporin and nonresistant to all carbapenems tested at a clinical laboratory from a surveillance area resident in a 30-day period. Demographic and clinical data were obtained from medical records. The Centers for Disease Control and Prevention (CDC) performed reference antimicrobial susceptibility testing and whole-genome sequencing on a convenience sample of case isolates. RESULTS: We identified 884 incident cases. The estimated annual incidence in sites conducting population-based surveillance was 199.7 per 100,000 population. Overall, 800 isolates (96%) were from urine, and 790 (89%) were E. coli. Also, 393 cases (47%) were community-associated. Among 136 isolates (15%) tested at the CDC, 122 (90%) met the surveillance definition phenotype; 114 (93%) of 122 were shown to be ESBL producers by clavulanate testing. In total, 111 (97%) of confirmed ESBL producers harbored a blaCTX-M gene. Among ESBL-producing E. coli isolates, 52 (54%) were ST131; 44% of these cases were community associated. CONCLUSIONS: The burden of ESBL-E was high across surveillance sites, with nearly half of cases acquired in the community. EIP has implemented ongoing ESBL-E surveillance to inform prevention efforts, particularly in the community and to watch for the emergence of new ESBL-E strains.


Subject(s)
Escherichia coli Infections , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , beta-Lactamases/genetics , Escherichia coli/genetics , Microbial Sensitivity Tests , Escherichia coli Infections/epidemiology , Escherichia coli Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella Infections/epidemiology , Klebsiella Infections/drug therapy
18.
Microb Drug Resist ; 28(4): 389-397, 2022 04.
Article in English | MEDLINE | ID: mdl-35172110

ABSTRACT

Carbapenem-resistant Enterobacterales (CRE) are a growing public health concern due to resistance to multiple antibiotics and potential to cause health care-associated infections with high mortality. Carbapenemase-producing CRE are of particular concern given that carbapenemase-encoding genes often are located on mobile genetic elements that may spread between different organisms and species. In this study, we performed phenotypic and genotypic characterization of CRE collected at eight U.S. sites participating in active population- and laboratory-based surveillance of carbapenem-resistant organisms. Among 421 CRE tested, the majority were isolated from urine (n = 349, 83%). Klebsiella pneumoniae was the most common organism (n = 265, 63%), followed by Enterobacter cloacae complex (n = 77, 18%) and Escherichia coli (n = 50, 12%). Of 419 isolates analyzed by whole genome sequencing, 307 (73%) harbored a carbapenemase gene; variants of blaKPC predominated (n = 299, 97%). The occurrence of carbapenemase-producing K. pneumoniae, E. cloacae complex, and E. coli varied by region; the predominant sequence type within each genus was ST258, ST171, and ST131, respectively. None of the carbapenemase-producing CRE isolates displayed resistance to all antimicrobials tested; susceptibility to amikacin and tigecycline was generally retained.


Subject(s)
Carbapenems , Enterobacteriaceae Infections , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbapenems/pharmacology , Enterobacter , Enterobacteriaceae Infections/drug therapy , Enterobacteriaceae Infections/epidemiology , Escherichia coli/genetics , Humans , Klebsiella pneumoniae/genetics , Microbial Sensitivity Tests , United States , beta-Lactamases/genetics
19.
Open Forum Infect Dis ; 9(1): ofab643, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35036469

ABSTRACT

BACKGROUND: Carbapenem-resistant Enterobacterales (CRE) are highly antibiotic-resistant bacteria. Whether CRE resistant only to ertapenem among carbapenems (ertapenem "mono-resistant") represent a unique CRE subset with regards to risk factors, carbapenemase genes, and outcomes is unknown. METHODS: We analyzed surveillance data from 9 CDC Emerging Infections Program (EIP) sites. A case was the first isolation of a carbapenem-resistant Enterobacter cloacae complex, Escherichia coli, Klebsiella aerogenes, K. oxytoca, K. pneumoniae, or K. variicola from a normally sterile site or urine in an EIP catchment area resident in 2016-2017. We compared risk factors, carbapenemase genes, antibiotic susceptibility, and mortality of ertapenem "mono-resistant" cases to "other" CRE cases (resistant to ≥1 carbapenem other than ertapenem) and analyzed risk factors for mortality. RESULTS: Of 2009 cases, 1249 (62.2%) were ertapenem-mono-resistant and 760 (37.8%) were other CRE. Ertapenem-mono-resistant CRE cases were more frequently ≥80 years old (29.1% vs 19.5%; P < .0001) and female (67.9% vs 59.0%; P < .0001). Ertapenem-mono-resistant isolates were more likely to be Enterobacter cloacae complex (48.4% vs 15.4%; P < .0001) but less likely to be isolated from a normally sterile site (7.1% vs 11.7%; P < .01) or to have a carbapenemase gene (2.4% vs 47.4%; P < .0001). Ertapenem-mono-resistance was not associated with 90-day mortality in logistic regression models. Carbapenemase-positive isolates were associated with mortality (odds ratio, 1.93; 95% CI, 1.30-2.86). CONCLUSIONS: Ertapenem-mono-resistant CRE rarely have carbapenemase genes and have distinct clinical and microbiologic characteristics from other CRE. These findings may inform antibiotic choice and infection prevention practices, particularly when carbapenemase testing is not available.

20.
Clin Infect Dis ; 74(4): 723-728, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34346494

ABSTRACT

Diagnostic stewardship means ordering the right tests for the right patient at the right time to inform optimal clinical care. Diagnostic stewardship is an integral part of antibiotic stewardship efforts to optimize antibiotic use and improve patient outcomes, including reductions in antibiotic resistance and treatment of sepsis. The Centers for Disease Control and Prevention's Division of Healthcare Quality Promotion hosted a meeting on improving patient safety through diagnostic stewardship with a focus on use of the laboratory. At the meeting, emerging issues in the field of diagnostic stewardship were identified, awareness of these issues among stakeholders was raised, and strategies and interventions to address the issues were discussed-all with an emphasis on improved outcomes and patient safety. Here, we summarize the key takeaways of the meeting including needs for diagnostic stewardship implementation, promising future avenues for diagnostic stewardship implementation, and areas of needed research.


Subject(s)
Antimicrobial Stewardship , Cross Infection , Sepsis , Anti-Bacterial Agents/therapeutic use , Cross Infection/drug therapy , Delivery of Health Care , Drug Resistance, Microbial , Humans , Sepsis/diagnosis , Sepsis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...