Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Immunol ; 53(11): e2250284, 2023 11.
Article in English | MEDLINE | ID: mdl-37503840

ABSTRACT

To obtain a better understanding of the biology behind life-threatening fungal infections caused by Candida albicans, we recently conducted an in silico screening for fungal and host protein interaction partners. We report here that the extracellular domain of human CD4 binds to the moonlighting protein enolase 1 (Eno1) of C. albicans as predicted bioinformatically. By using different anti-CD4 monoclonal antibodies, we determined that C. albicans Eno1 (CaEno1) primarily binds to the extracellular domain 3 of CD4. Functionally, we observed that CaEno1 binding to CD4 activated lymphocyte-specific protein tyrosine kinase (LCK), which was also the case for anti-CD4 monoclonal antibodies tested in parallel. CaEno1 binding to naïve human CD4+ T cells skewed cytokine secretion toward a Th2 profile indicative of poor fungal control. Moreover, CaEno1 inhibited human memory CD4+ T-cell recall responses. Therapeutically, CD4+ T cells transduced with a p41/Crf1-specific T-cell receptor developed for adoptive T-cell therapy were not inhibited by CaEno1 in vitro. Together, the interaction of human CD4+ T cells with CaEno1 modulated host CD4+ T-cell responses in favor of the fungus. Thus, CaEno1 mediates not only immune evasion through its interference with complement regulators but also through the direct modulation of CD4+ T-cell responses.


Subject(s)
Candida albicans , T-Lymphocytes , Humans , T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes , Phosphopyruvate Hydratase/metabolism , Antibodies, Monoclonal/metabolism
2.
J Immunol ; 211(5): 804-815, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37436030

ABSTRACT

Because of the growing numbers of immunocompromised patients, the incidence of life-threatening fungal infections caused by Candida albicans and Aspergillus fumigatus is increasing. We have recently identified enolase 1 (Eno1) from A. fumigatus as an immune evasion protein. Eno1 is a fungal moonlighting protein that mediates adhesion and invasion of human cells and also immune evasion through complement inactivation. We now show that soluble Eno1 has immunostimulatory activity. We observed that Eno1 from both C. albicans and A. fumigatus directly binds to the surface of lymphocytes, preferentially human and mouse B cells. Functionally, Eno1 upregulated CD86 expression on B cells and induced proliferation. Although the receptor for fungal Eno1 on B lymphocytes is still unknown, the comparison of B cells from wild-type and MyD88-deficient mice showed that B cell activation by Eno1 required MyD88 signaling. With respect to infection biology, we noted that mouse B cells stimulated by Eno1 secreted IgM and IgG2b. These Igs bound C. albicans hyphae in vitro, suggesting that Eno1-induced Ab secretion might contribute to protection from invasive fungal disease in vivo. Eno1 also triggered the release of proinflammatory cytokines from monocytes, particularly IL-6, which is a potent activator of B cells. Together, our data shed new light on the role of secreted Eno1 in infections with C. albicans and A. fumigatus. Eno1 secretion by these pathogenic microbes appears to be a double-edged sword by supporting fungal pathogenicity while triggering (antifungal) immunity.


Subject(s)
Aspergillus fumigatus , Candida albicans , Phosphopyruvate Hydratase , Animals , Humans , Mice , Aspergillus fumigatus/enzymology , Aspergillus fumigatus/metabolism , Candida albicans/enzymology , Candida albicans/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Monocytes/metabolism , Monocytes/microbiology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Phosphopyruvate Hydratase/metabolism , B-Lymphocytes/metabolism , B-Lymphocytes/microbiology
3.
Front Cell Infect Microbiol ; 13: 1108235, 2023.
Article in English | MEDLINE | ID: mdl-37082713

ABSTRACT

Fungal infections are a major global health burden where Candida albicans is among the most common fungal pathogen in humans and is a common cause of invasive candidiasis. Fungal phenotypes, such as those related to morphology, proliferation and virulence are mainly driven by gene expression, which is primarily regulated by kinase signaling cascades. Serine-arginine (SR) protein kinases are highly conserved among eukaryotes and are involved in major transcriptional processes in human and S. cerevisiae. Candida albicans harbors two SR protein kinases, while Sky2 is important for metabolic adaptation, Sky1 has similar functions as in S. cerevisiae. To investigate the role of these SR kinases for the regulation of transcriptional responses in C. albicans, we performed RNA sequencing of sky1Δ and sky2Δ and integrated a comprehensive phosphoproteome dataset of these mutants. Using a Systems Biology approach, we study transcriptional regulation in the context of kinase signaling networks. Transcriptomic enrichment analysis indicates that pathways involved in the regulation of gene expression are downregulated and mitochondrial processes are upregulated in sky1Δ. In sky2Δ, primarily metabolic processes are affected, especially for arginine, and we observed that arginine-induced hyphae formation is impaired in sky2Δ. In addition, our analysis identifies several transcription factors as potential drivers of the transcriptional response. Among these, a core set is shared between both kinase knockouts, but it appears to regulate different subsets of target genes. To elucidate these diverse regulatory patterns, we created network modules by integrating the data of site-specific protein phosphorylation and gene expression with kinase-substrate predictions and protein-protein interactions. These integrated signaling modules reveal shared parts but also highlight specific patterns characteristic for each kinase. Interestingly, the modules contain many proteins involved in fungal morphogenesis and stress response. Accordingly, experimental phenotyping shows a higher resistance to Hygromycin B for sky1Δ. Thus, our study demonstrates that a combination of computational approaches with integration of experimental data can offer a new systems biological perspective on the complex network of signaling and transcription. With that, the investigation of the interface between signaling and transcriptional regulation in C. albicans provides a deeper insight into how cellular mechanisms can shape the phenotype.


Subject(s)
Candida albicans , Fungal Proteins , Protein Serine-Threonine Kinases , Humans , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/metabolism
4.
Cell Immunol ; 371: 104459, 2022 01.
Article in English | MEDLINE | ID: mdl-34847408

ABSTRACT

Invasive candidiasis is a healthcare-associated fungal infection with a high mortality rate. Neutrophils, the first line of defense during fungal infections, express the immunoregulatory Candida albicans receptors CEACAM1, CEACAM3, and CEACAM6. We analyzed the effects of specific antibodies on C. albicans-induced neutrophil responses. CEACAM6 ligation by 1H7-4B and to some extent CEACAM1 ligation by B3-17, but not CEACAM3 ligation by 308/3-3, resulted in the immediate release of stored CXCL8 and altered transcriptional responses of the C. albicans-stimulated neutrophils. Integrated network analyses and dynamic simulations of signaling cascades predicted alterations in apoptosis and cytokine secretion. We verified that CEACAM6 ligation enhanced Candida-induced neutrophil apoptosis and increased long-term IL-1ß/IL-6 release in responses to C. albicans. CEACAM3 ligation, but not CEACAM1 ligation, increased the long-term release of pro-inflammatory IL-1ß/IL-6. Taken together, we demonstrated for the first time that ligation of CEACAM receptors differentially affects the regulation of C. albicans-induced immune functions in human neutrophils.


Subject(s)
Antigens, CD/immunology , Candida albicans/immunology , Carcinoembryonic Antigen/immunology , Cell Adhesion Molecules/immunology , Neutrophils/immunology , Antibodies, Monoclonal/immunology , Apoptosis/immunology , Candidiasis, Invasive/mortality , Candidiasis, Invasive/pathology , Cytokines/immunology , Female , GPI-Linked Proteins/immunology , Humans , Immunomodulation/immunology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Male
5.
Front Microbiol ; 6: 764, 2015.
Article in English | MEDLINE | ID: mdl-26300851

ABSTRACT

Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host-pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host-fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen-host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi-human and fungi-mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host-fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host-fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host-fungi transcriptome and proteome data.

SELECTION OF CITATIONS
SEARCH DETAIL
...