Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 7(4): 3470-3482, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35128256

ABSTRACT

Reactive nitrogen species (RNS) are secreted by human cells in response to infection by Mycobacterium tuberculosis (Mtb). Although RNS can kill Mtb under some circumstances, Mtb can adapt and survive in the presence of RNS by a process that involves modulation of gene expression. Previous studies focused primarily on stress-related changes in the Mtb transcriptome. This study unveils changes in the Mtb proteome in response to a sub-lethal dose of nitric oxide (NO) over several hours of exposure. Proteins were identified using liquid chromatography coupled with electrospray ionization mass spectrometry (LC-MS/MS). A total of 2911 Mtb proteins were identified, of which 581 were differentially abundant (DA) after exposure to NO in at least one of the four time points (30 min, 2 h, 6 h, and 20 h). The proteomic response to NO was marked by two phases, with few DA proteins in the early phase and a multitude of DA proteins in the later phase. The efflux pump Rv1687 stood out as being the only protein more abundant at all the time points and might play a role in the early protection of Mtb against nitrosative stress. These changes appeared to be compensatory in nature, contributing to iron homeostasis, energy metabolism, and other stress responses. This study thereby provides new insights into the response of Mtb to NO at the level of proteomics.

2.
Front Microbiol ; 11: 550760, 2020.
Article in English | MEDLINE | ID: mdl-33072011

ABSTRACT

Despite the discovery of the tubercle bacillus more than 130 years ago, its physiology and the mechanisms of virulence are still not fully understood. A comprehensive analysis of the proteomes of members of the human-adapted Mycobacterium tuberculosis complex (MTBC) lineages 3, 4, 5, and 7 was conducted to better understand the evolution of virulence and other physiological characteristics. Unique and shared proteomic signatures in these modern, pre-modern and ancient MTBC lineages, as deduced from quantitative bioinformatics analyses of high-resolution mass spectrometry data, were delineated. The main proteomic findings were verified by using immunoblotting. In addition, analysis of multiple genome alignment of members of the same lineages was performed. Label-free peptide quantification of whole cells from MTBC lineages 3, 4, 5, and 7 yielded a total of 38,346 unique peptides derived from 3092 proteins, representing 77% coverage of the predicted proteome. MTBC lineage-specific differential expression was observed for 539 proteins. Lineage 7 exhibited a markedly reduced abundance of proteins involved in DNA repair, type VII ESX-3 and ESX-1 secretion systems, lipid metabolism and inorganic phosphate uptake, and an increased abundance of proteins involved in alternative pathways of the TCA cycle and the CRISPR-Cas system as compared to the other lineages. Lineages 3 and 4 exhibited a higher abundance of proteins involved in virulence, DNA repair, drug resistance and other metabolic pathways. The high throughput analysis of the MTBC proteome by super-resolution mass spectrometry provided an insight into the differential expression of proteins between MTBC lineages 3, 4, 5, and 7 that may explain the slow growth and reduced virulence, metabolic flexibility, and the ability to survive under adverse growth conditions of lineage 7.

3.
J Virol ; 91(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27928011

ABSTRACT

Seroepidemiology shows that infections with adeno-associated virus (AAV) are widespread, but diverse AAV serotypes isolated from humans or nonhuman primates have so far not been proven to be causes of human disease. In view of the increasing success of AAV-derived vectors in human gene therapy, definition of the in vivo sites of wild-type AAV persistence and the clinical consequences of its reactivation is becoming increasingly urgent. Here, we identify the presumed cell type for AAV persistence in the human host by highly sensitive AAV PCRs developed for the full spectrum of human AAV serotypes. In genomic-DNA samples from leukocytes of 243 healthy blood donors, 34% were found to be AAV positive, predominantly AAV type 2 (AAV2) (77%), AAV5 (19%), and additional serotypes. Roughly 11% of the blood donors had mixed AAV infections. AAV prevalence was dramatically increased in immunosuppressed patients, 76% of whom were AAV positive. Of these, at least 45% displayed mixed infections. Follow-up of single blood donors over 2 years allowed repeated detection of the initial and/or additional AAV serotypes, suggestive of fluctuating, persistent infection. Leukocyte separation revealed that AAV resided in CD3+ T lymphocytes, perceived as the putative in vivo site of AAV persistence. Moreover, infectious AAVs of various serotypes could be rescued and propagated from numerous samples. The high prevalence and broad spectrum of human AAVs in leukocytes closely follow AAV seroepidemiology. Immunosuppression obviously enhances AAV replication in parallel with activation of human cytomegalovirus (HCMV) and human herpesvirus 6 (HHV-6), reminiscent of herpesvirus-induced AAV activation. IMPORTANCE: Adeno-associated virus is viewed as apathogenic and replication defective, requiring coinfection with adenovirus or herpesvirus for productive infection. In vivo persistence of a defective virus requires latency in specialized cell types to escape the host immune response until viral spread becomes possible. Reactivation from latency can be induced by diverse stimuli, including infections, typically induced upon host immunosuppression. We show for the first time that infectious AAV is highly prevalent in human leukocytes, specifically T lymphocytes, and that AAV is strongly amplified upon immunosuppression, along with reactivation of latent human herpesviruses. In the absence of an animal model to study the AAV life cycle, our findings in the human host will advance the understanding of AAV latency, reactivation, and in vivo pathogenesis.


Subject(s)
Dependovirus/physiology , Leukocytes, Mononuclear/virology , Parvoviridae Infections/epidemiology , Parvoviridae Infections/virology , T-Lymphocytes/virology , DNA, Viral , Dependovirus/classification , Humans , Immunocompromised Host , Leukocytes, Mononuclear/immunology , Polymerase Chain Reaction , Prevalence , Seroepidemiologic Studies , T-Lymphocytes/immunology , Virus Activation , Virus Latency
4.
J Mol Biol ; 426(24): 3960-3972, 2014 Dec 12.
Article in English | MEDLINE | ID: mdl-25158095

ABSTRACT

In enzymes that regulate chromatin structure, the combinatorial occurrence of modules that alter and recognise histone modifications is a recurrent feature. In this study, we explored the functional relationship between the acetyltransferase domain and the adjacent bromodomain/PHD finger (bromo/PHD) region of the transcriptional coactivator p300. We found that the bromo/PHD region of p300 can bind to the acetylated catalytic domain in vitro and augment the catalytic activity of the enzyme. Deletion of the PHD finger, but not the bromodomain, impaired the ability of the enzyme to acetylate histones in vivo, whilst it enhanced p300 self-acetylation. A point mutation in the p300 PHD finger that is related to the Rubinstein-Taybi syndrome resulted in increased self-acetylation but retained the ability to acetylate histones. Hence, the PHD finger appears to negatively regulate self-acetylation. Furthermore, our data suggest that the PHD finger has a role in the recruitment of p300 to chromatin.


Subject(s)
E1A-Associated p300 Protein/chemistry , E1A-Associated p300 Protein/metabolism , Histones/metabolism , Protein Structure, Tertiary , Acetylation , Binding Sites/genetics , Biocatalysis , E1A-Associated p300 Protein/genetics , HEK293 Cells , HeLa Cells , Humans , Immunoblotting , Immunohistochemistry , Microscopy, Fluorescence , Models, Molecular , Point Mutation , Protein Binding
5.
J Mol Biol ; 426(8): 1677-91, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24177535

ABSTRACT

Sirtuin-2 (SIRT2), the cytoplasmic member of the sirtuin family, has been implicated in the deacetylation of nuclear proteins. Although the enzyme has been reported to be located to the nucleus during G2/M phase, its spectrum of targets suggests functions in the nucleus throughout the cell cycle. While a nucleocytoplasmic shuttling mechanism has been proposed for SIRT2, recent studies have indicated the presence of a constitutively nuclear isoform. Here we report the identification of a novel splice variant (isoform 5) of SIRT2 that lacks a nuclear export signal and encodes a predominantly nuclear isoform. This novel isoform 5 fails to show deacetylase activity using several assays, both in vitro and in vivo, and we are led to conclude that this isoform is catalytically inactive. Nevertheless, it retains the ability to interact with p300, a known interaction partner. Moreover, changes in intrinsic tryptophan fluorescence upon denaturation indicate that the protein is properly folded. These data, together with computational analyses, confirm the structural integrity of the catalytic domain. Our results suggest an activity-independent nuclear function of the novel isoform.


Subject(s)
Sirtuin 2/genetics , Sirtuin 2/metabolism , 5' Untranslated Regions , Alternative Splicing , Catalytic Domain/genetics , Cell Nucleus/enzymology , HEK293 Cells , HeLa Cells , Humans , Models, Molecular , Nuclear Export Signals , Protein Conformation , Protein Folding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , RNA Precursors/genetics , RNA Precursors/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sirtuin 2/chemistry , Static Electricity
6.
PLoS Pathog ; 6(7): e1000985, 2010 Jul 08.
Article in English | MEDLINE | ID: mdl-20628575

ABSTRACT

Adeno-associated virus type 2 (AAV) is known to establish latency by preferential integration in human chromosome 19q13.42. The AAV non-structural protein Rep appears to target a site called AAVS1 by simultaneously binding to Rep-binding sites (RBS) present on the AAV genome and within AAVS1. In the absence of Rep, as is the case with AAV vectors, chromosomal integration is rare and random. For a genome-wide survey of wildtype AAV integration a linker-selection-mediated (LSM)-PCR strategy was designed to retrieve AAV-chromosomal junctions. DNA sequence determination revealed wildtype AAV integration sites scattered over the entire human genome. The bioinformatic analysis of these integration sites compared to those of rep-deficient AAV vectors revealed a highly significant overrepresentation of integration events near to consensus RBS. Integration hotspots included AAVS1 with 10% of total events. Novel hotspots near consensus RBS were identified on chromosome 5p13.3 denoted AAVS2 and on chromsome 3p24.3 denoted AAVS3. AAVS2 displayed seven independent junctions clustered within only 14 bp of a consensus RBS which proved to bind Rep in vitro similar to the RBS in AAVS3. Expression of Rep in the presence of rep-deficient AAV vectors shifted targeting preferences from random integration back to the neighbourhood of consensus RBS at hotspots and numerous additional sites in the human genome. In summary, targeted AAV integration is not as specific for AAVS1 as previously assumed. Rather, Rep targets AAV to integrate into open chromatin regions in the reach of various, consensus RBS homologues in the human genome.


Subject(s)
Chromosomes, Human , DNA-Binding Proteins/metabolism , Dependovirus/genetics , Genome, Human , Viral Proteins/metabolism , Virus Integration , Virus Latency/genetics , Base Sequence , Binding Sites , Computational Biology , Genome, Viral , Humans
SELECTION OF CITATIONS
SEARCH DETAIL